scholarly journals Isolation of spermatogenic cells from the cynomolgus macaque testis with flow cytometry

2021 ◽  
Vol 2 (1) ◽  
pp. 100294
Author(s):  
Xianzhong Lau ◽  
Pearly Jean Ai Yong ◽  
Charles Kang Liang Lou ◽  
Prabhakaran Munusamy ◽  
Mahesh Sangrithi
1993 ◽  
Vol 45 (2-3) ◽  
pp. 75-80 ◽  
Author(s):  
R. De Vita ◽  
A. Calugi ◽  
D. Cavallo ◽  
N. Fioretti ◽  
D. Forte ◽  
...  

genesis ◽  
2019 ◽  
Vol 57 (4) ◽  
pp. e23283
Author(s):  
Leah L. Zagore ◽  
Cydni C. Akesson ◽  
Donny D. Licatalosi

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jia Tian ◽  
Ke Ma ◽  
Cheng-bin Pei ◽  
Shao-hua Zhang ◽  
Xue Li ◽  
...  

Abstract Background Spermatogonial stem cell (SSC) transplantation technology as a promising option for male fertility preservation has received increasing attention, along with efficient SSC purification technology as a necessary technical support; however, the safety of such application in patients with tumors remains controversial. Methods In this study, we used a green fluorescent protein mouse xenograft model of B cell acute lymphocytic leukemia. We isolated and purified SSCs from the testicular tissue of model mice using density gradient centrifugation, immune cell magnetic bead separation, and flow cytometry. The purified SSCs were transplanted into convoluted seminiferous tubules of the nude mice and C57BL/6 male mice subjected to busulfan. The development and proliferation of SSCs in the recipient testis were periodically tested, along with whether B cell acute lymphocytic leukemia was induced following SSC implantation. The genetic characteristics of the offspring obtained from natural mating were also observed. Results In testicular leukemia model mice, a large number of BALL cells infiltrated into the seminiferous tubule, spermatogenic cells, and sperm cells in the testis tissue decreased. After spermatogonial stem cell transplantation, the transplanted SSCs purified by immunomagnetic beads and flow cytometry methods colonized and proliferated extensively in the basement of the seminiferous tubules of mice; a large number of spermatogenic cells and sperm were found in recipient testicular tissue after 12 weeks of SSC transplantation. In leukemia detection in nude mice after transplantation in the three SSC purification groups, a large number of BALL cells could be detected in the blood of recipient mice 2–3 weeks after transplantation in the density gradient centrifugation group, but not in the blood of the flow cytometry sorting group and the immunomagnetic bead group after 16 weeks of observation. Conclusions In this study, we confirmed that immunomagnetic beads and flow cytometry methods of purifying SSCs from the testicular tissue of the testicular leukemia mouse model could be safely applied to the SSC transplantation technology without concomitant tumor implantation. The results thus provide a theoretical basis for the application of tumor SSC cryopreservation for fertility preservation in patients with tumors.


Reproduction ◽  
2010 ◽  
Vol 139 (6) ◽  
pp. 1031-1038 ◽  
Author(s):  
Weigong Liao ◽  
Mingchun Cai ◽  
Jian Chen ◽  
Jian Huang ◽  
Fuyu Liu ◽  
...  

The study was conducted to explore the effects of hypobaric hypoxia on spermatogenesis in rats. Adult male Wistar rats were randomly divided into four groups: three hypoxia-exposed groups and one normoxic control group. Rats in the normoxic control group were raised at an altitude of 300 m, while rats in the 5-, 15-, and 30-day hypoxic groups were raised in a hypobaric chamber simulating a high altitude of 5000 m for 5, 15, and 30 days respectively. Flow cytometry was used to detect the DNA content of testicular spermatogenic cells in rats. The apoptosis of germ cells in testis was analyzed by using TUNEL assay. Spermatogenesis was also evaluated by morphology. Flow cytometry analysis revealed that 5–30 days of hypobaric hypoxia exposure significantly reduced the percentage of tetraploid cell population in rat testis. After rats were exposed to hypobaric hypoxia for 30 days, the ratio of haploid and diploid cell populations in testis reduced significantly. Seminiferous tubules with apoptotic germ cell increased after exposure to hypoxia. Most apoptotic germ cells were spermatogonia and spermatocytes. Hypoxia also caused decrease of cellularity of seminiferous epithelium, degeneration and sloughing of seminiferous epithelial cells occasionally. The data suggest that hypobaric hypoxia inhibits the spermatogenesis in rats. Decrease of tetraploid spermatogenic cells (primary spermatocytes) induced by hypoxia is an important approach to suppress spermatogenesis. The apoptosis of primary spermatocytes and spermatogonia may contribute to the loss of tetraploid cell populations.


Author(s):  
J. Chakraborty ◽  
A. P. Sinha Hikim ◽  
J. S. Jhunjhunwala

Although the presence of annulate lamellae was noted in many cell types, including the rat spermatogenic cells, this structure was never reported in the Sertoli cells of any rodent species. The present report is based on a part of our project on the effect of torsion of the spermatic cord to the contralateral testis. This paper describes for the first time, the fine structural details of the annulate lamellae in the Sertoli cells of damaged testis from guinea pigs.One side of the spermatic cord of each of six Hartly strain adult guinea pigs was surgically twisted (540°) under pentobarbital anesthesia (1). Four months after induction of torsion, animals were sacrificed, testes were excised and processed for the light and electron microscopic investigations. In the damaged testis, the majority of seminiferous tubule contained a layer of Sertoli cells with occasional spermatogonia (Fig. 1). Nuclei of these Sertoli cells were highly pleomorphic and contained small chromatinic clumps adjacent to the inner aspect of the nuclear envelope (Fig. 2).


2001 ◽  
Vol 66 (2) ◽  
pp. 100-106 ◽  
Author(s):  
M. Bellido ◽  
E. Rubiol ◽  
J. Ubeda ◽  
O. Lopez ◽  
C. Estivill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document