Review for "Diet‐induced microbial autofluorescence confounds flow cytometry of ex vivo isolated fecal microbes"

Author(s):  
Hyun-Dong Chang
Keyword(s):  
2019 ◽  
Vol 16 (8) ◽  
pp. 723-731 ◽  
Author(s):  
Alexander Sturzu ◽  
Sumbla Sheikh ◽  
Hubert Kalbacher ◽  
Thomas Nägele ◽  
Christopher Weidenmaier ◽  
...  

Background: Curcumin has been of interest in the field of Alzheimer’s disease. Early studies on transgenic mice showed promising results in the reduction of amyloid plaques.However, curcumin is very poorly soluble in aqueous solutions and not easily accessible to coupling as it contains only phenolic groups as potential coupling sites. For these reasons only few imaging studies using curcumin bound as an ester were performed and curcumin is mainly used as nutritional supplement. Methods: In the present study we produced an aminoethyl ether derivative of curcumin using a nucleophilic substitution reaction. This is a small modification and should not impact the properties of curcumin while introducing an easily accessible reactive amino group. This novel compound could be used to couple curcumin to other molecules using the standard methods of peptide synthesis. We studied the aminoethyl-curcumin compound and a tripeptide carrying this aminoethyl-curcumin and the fluorescent dye fluorescein (FITC-curcumin) in vitro on cell culture using confocal laser scanning microscopy and flow cytometry. Then these two substances were tested ex vivo on brain sections prepared from transgenic mice depicting Alzheimer-like β-amyloid plaques. Results: In the in vitro CLSM microscopy and flow cytometry experiments we found dot-like unspecific uptake and only slight cytotoxicity correlating with this uptake. As these measurements were optimized for the use of fluorescein as dye we found that the curcumin at 488nm fluorescence excitation was not strong enough to use it as a fluorescence marker in these applications. In the ex vivo sections CLSM experiments both the aminoethyl-curcumin and the FITC-curcumin peptide bound specifically to β- amyloid plaques. Conclusion: In conclusion we successfully produced a novel curcumin derivative which could easily be coupled to other imaging or therapeutic molecules as a sensor for amyloid plaques.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A623-A623
Author(s):  
Yannick Rakké ◽  
Lucia Campos Carrascosa ◽  
Adriaan van Beek ◽  
Valeska de Ruiter ◽  
Michael Doukas ◽  
...  

BackgroundImmune checkpoint blockade (ICB; e.g. anti-PD-1/-CTLA-4) has been proven to be clinically effective in mismatch repair deficient (dMMR) colorectal carcinoma (CRC). Yet, the majority of patients carry mismatch repair proficient (pMMR) CRC, especially those with liver metastasis, and do not respond to ICB. Here, we studied the effect of immune checkpoint stimulation via GITR targeting on human tumour-infiltrating lymphocyte (TIL) functionality in pMMR primary CRC and liver metastases (CRLM).MethodsHuman TIL were isolated from freshly resected pMMR tumours of patients with primary CRC (stage 1–3) or liver metastases (table 1). GITR expression on TIL was determined using flow cytometry and compared to leukocytes isolated from blood (PBMC) and tumour-free surrounding tissues (tumour-free colon/liver, resp. TFC and TFL). Ex vivo functional assays were used to assess TIL expansion, activation and cytokine/cytotoxic mediator secretion upon CD3/CD28 bead activation and co-stimulation using an antibody-crosslinked recombinant trimeric GITR ligand (GITRL).ResultsGITR was overexpressed on TIL when compared to other stimulatory immune checkpoints (4-1BB, OX40). GITR expression was enhanced on CD4+ and CD8+ TIL compared to PBMC and TFC or TFL compartments in both primary CRC and CRLM. Among CD4+ TIL, GITR was increasingly expressed on CD45RA± FoxP3- helper T (Th), CD45RA- FoxP3int activated helper T (aTh), and CD45RA- FoxP3hi activated regulatory T cells (aTreg), respectively. Within CD8+ TIL, GITR expression was higher on TOX+ PD1Hi and putatively tumour-reactive CD103+ CD39+ TIL.1 Impaired effector cytokine production upon ex vivo PMA/ionomycin stimulation was observed in CD4+ and CD8+ GITR-expressing TIL, hinting to functional exhaustion of the target population. However, recombinant GITRL reinvigorated ex vivo TIL responses by significantly enhancing CD4+ and CD8+ TIL numbers and proinflammatory cytokine secretion in a dose-dependent manner (figure 1). Treg depletion did not fully abrogate the stimulatory effect of GITR ligation on CD4+ and CD8+ T cell expansion, demonstrating that the stimulatory effect was partly exerted via direct targeting GITR on effector T cells. Importantly, GITR-ligation also enhanced expansion of purified CD8+CD39+ TIL. Dual treatment with GITR ligand and nivolumab (anti-PD-1) further enhanced CD8+ TIL responses compared to GITR ligand monotherapy, whereas nivolumab alone did not show any effect.Abstract 588 Table 1Patient characteristicsPatient characteristics of patients included for FACS analysis and/or functional assays. † Pathologic staging was performed according to the AJCC 8th edition criteriaAbstract 588 Figure 1GITR ligation enhances CD4+ and CD8+ TIL expansionTIL were isolated from CRC or CRLM and cultured upon CD3/CD28 activation with or without GITRL (0.1–1.0 ug/mL) for 8 days. TIL numbers were acquired by flow cytometry and normalized to counting beads. Indicated is fold change relative to ctrl-treated TIL (n=10).ConclusionsAgonistic targeting of GITR enhances ex vivo human TIL functionality in pMMR CRC and might therefore be a promising approach for novel mono- or combinatorial immunotherapies in primary CRC and CRLM.AcknowledgementsN/ATrial RegistrationN/AEthics ApprovalThe study was approved by the medical ethics committee of the Erasmus Medical Center (MEC-2012-331).ConsentN/AReferenceDuhen T, Duhen R, Montler R, et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun 2018;9(1):2724. doi: 10.1038/s41467-018-05072-0.


Author(s):  
Freja Albjerg Venning ◽  
Kamilla Westarp Zornhagen ◽  
Lena Wullkopf ◽  
Jonas Sjölund ◽  
Carmen Rodriguez-Cupello ◽  
...  

Abstract Background Cancer-associated fibroblasts (CAFs) comprise a heterogeneous population of stromal cells within the tumour microenvironment. CAFs exhibit both tumour-promoting and tumour-suppressing functions, making them exciting targets for improving cancer treatments. Careful isolation, identification, and characterisation of CAF heterogeneity is thus necessary for ex vivo validation and future implementation of CAF-targeted strategies in cancer. Methods Murine 4T1 (metastatic) and 4T07 (poorly/non-metastatic) orthotopic triple negative breast cancer tumours were collected after 7, 14, or 21 days. The tumours were analysed via flow cytometry for the simultaneous expression of six CAF markers: alpha smooth muscle actin (αSMA), fibroblast activation protein alpha (FAPα), platelet derived growth factor receptor alpha and beta (PDGFRα and PDGFRβ), CD26/DPP4 and podoplanin (PDPN). All non-CAFs were excluded from the analysis using a lineage marker cocktail (CD24, CD31, CD45, CD49f, EpCAM, LYVE-1, and TER-119). In total 128 murine tumours and 12 healthy mammary fat pads were analysed. Results We have developed a multicolour flow cytometry strategy based on exclusion of non-CAFs and successfully employed this to explore the temporal heterogeneity of freshly isolated CAFs in the 4T1 and 4T07 mouse models of triple-negative breast cancer. Analysing 128 murine tumours, we identified 5–6 main CAF populations and numerous minor ones based on the analysis of αSMA, FAPα, PDGFRα, PDGFRβ, CD26, and PDPN. All markers showed temporal changes with a distinct switch from primarily PDGFRα+ fibroblasts in healthy mammary tissue to predominantly PDGFRβ+ CAFs in tumours. CD26+ CAFs emerged as a large novel subpopulation, only matched by FAPα+ CAFs in abundance. Conclusion We demonstrate that multiple subpopulations of CAFs co-exist in murine triple negative breast cancer, and that the abundance and dynamics for each marker differ depending on tumour type and time. Our results form the foundation needed to isolate and characterise specific CAF populations, and ultimately provide an opportunity to therapeutically target specific CAF subpopulations.


2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Grennady Wirjanata ◽  
Irene Handayuni ◽  
Pak Prayoga ◽  
Dwi Apriyanti ◽  
Ferryanto Chalfein ◽  
...  

2010 ◽  
Vol 77A (11) ◽  
pp. 1059-1066 ◽  
Author(s):  
Matthew R. Reynolds ◽  
Shari M. Piaskowski ◽  
Kimberly L Weisgrau ◽  
Andrea M. Weiler ◽  
Thomas C. Friedrich ◽  
...  

2000 ◽  
Vol 13 (2) ◽  
pp. 167-195 ◽  
Author(s):  
Alberto Álvarez-Barrientos ◽  
Javier Arroyo ◽  
Rafael Cantón ◽  
César Nombela ◽  
Miguel Sánchez-Pérez

SUMMARY Classical microbiology techniques are relatively slow in comparison to other analytical techniques, in many cases due to the need to culture the microorganisms. Furthermore, classical approaches are difficult with unculturable microorganisms. More recently, the emergence of molecular biology techniques, particularly those on antibodies and nucleic acid probes combined with amplification techniques, has provided speediness and specificity to microbiological diagnosis. Flow cytometry (FCM) allows single- or multiple-microbe detection in clinical samples in an easy, reliable, and fast way. Microbes can be identified on the basis of their peculiar cytometric parameters or by means of certain fluorochromes that can be used either independently or bound to specific antibodies or oligonucleotides. FCM has permitted the development of quantitative procedures to assess antimicrobial susceptibility and drug cytotoxicity in a rapid, accurate, and highly reproducible way. Furthermore, this technique allows the monitoring of in vitro antimicrobial activity and of antimicrobial treatments ex vivo. The most outstanding contribution of FCM is the possibility of detecting the presence of heterogeneous populations with different responses to antimicrobial treatments. Despite these advantages, the application of FCM in clinical microbiology is not yet widespread, probably due to the lack of access to flow cytometers or the lack of knowledge about the potential of this technique. One of the goals of this review is to attempt to mitigate this latter circumstance. We are convinced that in the near future, the availability of commercial kits should increase the use of this technique in the clinical microbiology laboratory.


2021 ◽  
Author(s):  
Yolanda Corripio-Miyar ◽  
Adam Hayward ◽  
Hannah Lemon ◽  
Amy R Sweeny ◽  
Xavier Bal ◽  
...  

1. The adaptive immune system is critical to an effective, long-lasting ability to respond to infection in vertebrates and T-helper (Th) cells play a key role in orchestrating the adaptive immune response. Laboratory studies show that functionally distinct Th responses provide protection against different kinds of parasites (i.e., Th1 responses against microparasites and Th2 against macroparasites). 2. Natural populations must deal with challenges from a wide range of infectious agents and co-infection with different types of parasite is the norm, so different Th responses are likely to play an important and dynamic role in maintaining host health and fitness. However, the relationship between T helper immune phenotypes and infection with different types of parasites remains poorly understood in wild animals. 3. In this study, we characterised variation in functionally distinct Th responses (Th1, Th2, Th17 and regulatory responses) in a wild population of Soay sheep using flow cytometry to detect Th-subset specific transcription factors, and ex vivo lymphocyte stimulation to quantify release of Th-associated cytokines. We specifically tested the prediction that raised Th1 and Th2 responses should predict reduced apicomplexan (coccidian) and helminth (nematode) parasite burdens, respectively. 4. Cell counts of different Th subsets measured by flow cytometry did not vary with age or sex. However, all measures of Th-associated ex vivo cytokine production increased with age, and Th17- and regulatory Th-associated cytokine production increased more rapidly with age in males than females. 5. Independent of age and sex, Th2-associated immune measures negatively predicted gastro-intestinal strongyle nematode faecal egg count, while production of the Th1-associated cytokine IFN-γ negatively predicted coccidian faecal oocyst count. 6. Our results provide important support from outside the laboratory that Th1 and Th2 responses confer resistance to different kinds of parasites (micro- and macro-parasites, respectively). They also add to mounting evidence from wild populations that Th1/Th2 trade-offs often observed in controlled laboratory experiments may not readily translate to more complex natural systems. 7. Our study illustrates that harnessing more specific reagents and tools from laboratory immunology has the potential to illuminate our understanding of epidemiology and host-parasite co-evolution in the wild.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clovis Boibessot ◽  
France-Hélène Joncas ◽  
Aerin Park ◽  
Zohra Berrehail ◽  
Jean-François Pelletier ◽  
...  

AbstractWithin the prostate tumor microenvironment (TME) there are complex multi-faceted and dynamic communication occurring between cancer cells and immune cells. Macrophages are key cells which infiltrate and surround tumor cells and are recognized to significantly contribute to tumor resistance and metastases. Our understanding of their function in the TME is commonly based on in vitro and in vivo models, with limited research to confirm these model observations in human prostates. Macrophage infiltration was evaluated within the TME of human prostates after 72 h culture of fresh biopsies samples in the presence of control or enzalutamide. In addition to immunohistochemistry, an optimized protocol for multi-parametric evaluation of cellular surface markers was developed using flow cytometry. Flow cytometry parameters were compared to clinicopathological features. Immunohistochemistry staining for 19 patients with paired samples suggested enzalutamide increased the expression of CD163 relative to CD68 staining. Techniques to validate these results using flow cytometry of dissociated biopsies after 72 h of culture are described. In a second cohort of patients with Gleason grade group ≥ 3 prostate cancer, global macrophage expression of CD163 was unchanged with enzalutamide treatment. However, exploratory analyses of our results using multi-parametric flow cytometry for multiple immunosuppressive macrophage markers suggest subgroup changes as well as novel associations between circulating biomarkers like the neutrophil to lymphocyte ratio (NLR) and immune cell phenotype composition in the prostate TME. Further, we observed an association between B7–H3 expressing tumor-associated macrophages and the presence of intraductal carcinoma. The use of flow cytometry to evaluate ex vivo cultured prostate biopsies fills an important gap in our ability to understand the immune cell composition of the prostate TME. Our results highlight novel associations for further investigation.


2019 ◽  
Vol 114 ◽  
Author(s):  
Elizangela Farias ◽  
Fhabiane Bezerra ◽  
Djane Clarys Baia-da-Silva ◽  
Yury Oliveira Chaves ◽  
Tatiana Bacry Cardoza ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e19013-e19013
Author(s):  
Marianne T. Santaguida ◽  
Ryosuke Kita ◽  
Steven A. Schaffert ◽  
Erica K. Anderson ◽  
Kamran A Ali ◽  
...  

e19013 Background: Understanding the heterogeneity of AML is necessary for developing targeted drugs and diagnostics. A key measure of heterogeneity is the variance in response to treatments. Previously, we developed an ex vivo flow cytometry drug sensitivity assay (DSA) that predicted response to treatments in myelodysplastic syndrome. Unlike bulk cell viability measures of other drug sensitivity assays, our flow cytometry assay provides single cell resolution. The assay measures a drug’s effect on the viability or functional state of specific cell types. Here we present the development of this technology for AML, with additional measurements of DNA-Seq and RNA-Seq. Using the data from this assay, we aim to characterize the heterogeneity in AML drug sensitivity and the molecular mechanisms that drive it. Methods: As an initial feasibility analysis, we assayed 1 bone marrow and 3 peripheral blood AML patient samples. For the DSA, the samples were cultured with six AML standard of care (SOC) compounds across seven doses, in addition to two combinations. The cells were stained to detect multiple cell types including tumor blasts, and drug response was measured by flow cytometry. For the multi-omics, the cells were magnetically sorted to enrich for blasts and then assayed using a targeted 400 gene DNA-Seq panel and whole bulk transcriptome RNA-Seq. For comparison with BeatAML, Pearson correlations between gene expression and venetoclax sensitivity were investigated. Results: In our drug sensitivity assay, we measured dose response curves for the six SOC compounds, for each different cell type across each sample. The dose responses had cell type specific effects, including differences in drug response between CD11b+ blasts, CD11b- blasts, and other non-blast populations. Integrating with the DNA-Seq and RNA-Seq data, known associations between ex vivo drug response and gene expression were identified with additional cell type specificity. For example, BCL2A1 expression was negatively correlated with venetoclax sensitivity in CD11b- blasts but not in CD11b+ blasts. To further corroborate, among the top 1000 genes associated with venetoclax sensitivity in BeatAML, 93.7% had concordant directionality in effect. Conclusions: Here we describe the development of an integrated ex vivo drug sensitivity assay and multi-omics dataset. The data demonstrated that ex vivo responses to compounds differ between cell types, highlighting the importance of measuring drug response in specific cell types. In addition, we demonstrated that integrating these data will provide unique insights on molecular mechanisms that affect cell type specific drug response. As we continue to expand the number of patient samples evaluated with our multi-dimensional platform, this dataset will provide insights for novel drug target discovery, biomarker development, and, in the future, informing treatment decisions.


Sign in / Sign up

Export Citation Format

Share Document