Vaccine-Enhanced Adoptive T-Cell Therapy to Treat Canine Cancers

2021 ◽  
Vol 2 ◽  
pp. 143-155
Author(s):  
Noe Reyes ◽  
Gary W. Wood
2021 ◽  
Vol 9 (2) ◽  
pp. e001608
Author(s):  
Debottam Sinha ◽  
Sriganesh Srihari ◽  
Kirrliee Beckett ◽  
Laetitia Le Texier ◽  
Matthew Solomon ◽  
...  

BackgroundEpstein-Barr virus (EBV), an oncogenic human gammaherpesvirus, is associated with a wide range of human malignancies of epithelial and B-cell origin. Recent studies have demonstrated promising safety and clinical efficacy of allogeneic ‘off-the-shelf’ virus-specific T-cell therapies for post-transplant viral complications.MethodsTaking a clue from these studies, we developed a highly efficient EBV-specific T-cell expansion process using a replication-deficient AdE1-LMPpoly vector that specifically targets EBV-encoded nuclear antigen 1 (EBNA1) and latent membrane proteins 1 and 2 (LMP1 and LMP2), expressed in latency II malignancies.ResultsThese allogeneic EBV-specific T cells efficiently recognized human leukocyte antigen (HLA)-matched EBNA1-expressing and/or LMP1 and LMP2-expressing malignant cells and demonstrated therapeutic potential in a number of in vivo models, including EBV lymphomas that emerged spontaneously in humanized mice following EBV infection. Interestingly, we were able to override resistance to T-cell therapy in vivo using a ‘restriction-switching’ approach, through sequential infusion of two different allogeneic T-cell therapies restricted through different HLA alleles. Furthermore, we have shown that inhibition of the programmed cell death protein-1/programmed death-ligand 1 axis in combination with EBV-specific T-cell therapy significantly improved overall survival of tumor-bearing mice when compared with monotherapy.ConclusionThese findings suggest that restriction switching by sequential infusion of allogeneic T-cell therapies that target EBV through distinct HLA alleles may improve clinical response.


Leukemia ◽  
2021 ◽  
Author(s):  
Mohamed-Reda Benmebarek ◽  
Bruno L. Cadilha ◽  
Monika Herrmann ◽  
Stefanie Lesch ◽  
Saskia Schmitt ◽  
...  

AbstractTargeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.


2015 ◽  
Vol 26 (5) ◽  
pp. 276-285 ◽  
Author(s):  
David Edward Gilham ◽  
John Anderson ◽  
John Stephen Bridgeman ◽  
Robert Edward Hawkins ◽  
Mark Adrian Exley ◽  
...  

2016 ◽  
Vol 39 (3) ◽  
pp. 140-148 ◽  
Author(s):  
Hyeon-Seok Eom ◽  
Beom K. Choi ◽  
Youngjoo Lee ◽  
Hyewon Lee ◽  
Tak Yun ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
pp. 25 ◽  
Author(s):  
Haven R Garber ◽  
Asma Mirza ◽  
Elizabeth A Mittendorf ◽  
Gheath Alatrash

Cytotherapy ◽  
2002 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
John Barrett

Haematologica ◽  
2008 ◽  
Vol 93 (10) ◽  
pp. 1452-1456 ◽  
Author(s):  
D. J. Powell ◽  
B. L. Levine

Sign in / Sign up

Export Citation Format

Share Document