scholarly journals Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development

2011 ◽  
Vol 356 (2) ◽  
pp. 553-565 ◽  
Author(s):  
Gudrun Viktorin ◽  
Nadia Riebli ◽  
Anna Popkova ◽  
Angela Giangrande ◽  
Heinrich Reichert
Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Nature ◽  
2007 ◽  
Vol 449 (7160) ◽  
pp. 351-355 ◽  
Author(s):  
Ken-ichi Mizutani ◽  
Keejung Yoon ◽  
Louis Dang ◽  
Akinori Tokunaga ◽  
Nicholas Gaiano

Author(s):  
Rui-fang Li ◽  
Guo-xin Nan ◽  
Dan Wang ◽  
Chang Gao ◽  
Juan Yang ◽  
...  

Background: The specific effect of SV40T on neurocytes has been rarely investigated by the researchers. We transfected Schwann cells (SCs) that did not have differentiation ability with MPH 86 plasmid containing SV40T in order to explore the effects of SV40T on Schwann cells.Methods: SCs were transfected with MPH 86 plasmid carrying the SV40T gene and cultured in different media, as well as co-cultured with neural stem cells (NSCs). In our study, SCs overexpressing SV40T were defined as SV40T-SCs. The proliferation of these cells was detected by WST-1, and the expression of different biomarkers was analyzed by qPCR and immunohistochemistry. Results: SV40T induced the characteristics of NSCs, such as the ability to grow in suspension, form spheroid colonies and proliferate rapidly, in the SCs, which were reversed by knocking out SV40T by the Flip-adenovirus. In addition, SV40T upregulated the expressions of neural crest-associated markers Nestin, Pax3 and Slug, and down-regulated S100b as well as the markers of mature SCs MBP, GFAP and Olig1/2. These cells also expressed NSC markers like Nestin, Sox2, CD133 and SSEA-1, as well as early development markers of embryonic stem cells (ESCs) like BMP4, c-Myc, OCT4 and Gbx2. Co-culturing with NSCs induced differentiation of the SV40T-SCs into neuronal and glial cells. Conclusions: SV40T reprograms Schwann cells to stem-like cells at the stage of neural crest cells (NCCs) that can differentiate to neurocytes.


Author(s):  
Patricia P Garcez ◽  
Erick C Loiola ◽  
Rodrigo F Madeiro da Costa ◽  
Luiza Higa ◽  
Pablo Trindade ◽  
...  

Since the emergence of Zika virus (ZIKV), reports of microcephaly have increased dramatically in Brazil; however, causality between the widespread epidemic and malformations in fetal brains has not been confirmed. Here, we examine the effects of ZIKV infection in human neural stem cells growing as neurospheres and cerebral organoids. Using immunocytochemistry and electron microscopy, we show that ZIKV targets human brain cells, reducing their viability and growth as neurospheres and cerebral organoids. These results suggest that ZIKV abrogates neurogenesis during human brain development.


2009 ◽  
Vol 65 ◽  
pp. S55
Author(s):  
Seiji Hitoshi ◽  
Kumar Akhilesh ◽  
Yugo Ishino ◽  
Kenji F. Tanaka ◽  
Toshihiko Hosoya ◽  
...  

2012 ◽  
Vol 32 (18) ◽  
pp. 6275-6287 ◽  
Author(s):  
R. D. Hodge ◽  
B. R. Nelson ◽  
R. J. Kahoud ◽  
R. Yang ◽  
K. E. Mussar ◽  
...  

Author(s):  
Patricia P Garcez ◽  
Erick C Loiola ◽  
Rodrigo F Madeiro da Costa ◽  
Luiza Higa ◽  
Pablo Trindade ◽  
...  

Since the emergence of Zika virus (ZIKV), reports of microcephaly have increased dramatically in Brazil; however, causality between the widespread epidemic and malformations in fetal brains has not been confirmed. Here, we examine the effects of ZIKV infection in human neural stem cells growing as neurospheres and cerebral organoids. Using immunocytochemistry and electron microscopy, we show that ZIKV targets human brain cells, reducing their viability and growth as neurospheres and cerebral organoids. These results suggest that ZIKV abrogates neurogenesis during human brain development.


Sign in / Sign up

Export Citation Format

Share Document