Retinoic acid signaling restricts the size of the first heart field within the anterior lateral plate mesoderm

2021 ◽  
Vol 473 ◽  
pp. 119-129 ◽  
Author(s):  
Tiffany B. Duong ◽  
Andrew Holowiecki ◽  
Joshua S. Waxman
2021 ◽  
Vol 8 (4) ◽  
pp. 41
Author(s):  
Catherine Pfefferli ◽  
Hannah R. Moran ◽  
Anastasia Felker ◽  
Christian Mosimann ◽  
Anna Jaźwińska

The vertebrate heart integrates cells from the early-differentiating first heart field (FHF) and the later-differentiating second heart field (SHF), both emerging from the lateral plate mesoderm. In mammals, this process forms the basis for the development of the left and right ventricle chambers and subsequent chamber septation. The single ventricle-forming zebrafish heart also integrates FHF and SHF lineages during embryogenesis, yet the contributions of these two myocardial lineages to the adult zebrafish heart remain incompletely understood. Here, we characterize the myocardial labeling of FHF descendants in both the developing and adult zebrafish ventricle. Expanding previous findings, late gastrulation-stage labeling using drl-driven CreERT2 recombinase with a myocardium-specific, myl7-controlled, loxP reporter results in the predominant labeling of FHF-derived outer curvature and the right side of the embryonic ventricle. Raised to adulthood, such lineage-labeled hearts retain broad areas of FHF cardiomyocytes in a region of the ventricle that is positioned at the opposite side to the atrium and encompasses the apex. Our data add to the increasing evidence for a persisting cell-based compartmentalization of the adult zebrafish ventricle even in the absence of any physical boundary.


Development ◽  
2013 ◽  
Vol 140 (6) ◽  
pp. 1353-1363 ◽  
Author(s):  
B. Guner-Ataman ◽  
N. Paffett-Lugassy ◽  
M. S. Adams ◽  
K. R. Nevis ◽  
L. Jahangiri ◽  
...  

2021 ◽  
Author(s):  
Catherine Pfefferli ◽  
Hannah R. Moran ◽  
Anastasia Felker ◽  
Christian Mosimann ◽  
Anna Jazwinska

The vertebrate heart integrates cells from the early-differentiating first heart field (FHF) and the later-differentiating second heart field (SHF) emerging from the lateral plate mesoderm. In mammals, this process forms the basis for the development of the left and right ventricle chambers and subsequent chamber septation. The single ventricle-forming zebrafish heart also integrates FHF and SHF lineages during embryogenesis, yet the contributions of these two myocardial lineages to the adult zebrafish heart remain incompletely understood. Here, we characterize the myocardial labeling of FHF descendants in both the developing and adult zebrafish ventricle. Expanding previous findings, late gastrulation-stage labeling using drl-driven CreERT2 recombinase with a myocardium-specific, myl7-controlled loxP reporter results in predominant labeling of FHF-derived outer curvature and the right side of the embryonic ventricle. Raised to adulthood, such lineage-labeled hearts retain broad areas of FHF cardiomyocytes in a region of the ventricle that is positioned at the opposite side to the atrium and encompasses the apex. Our data add to the increasing evidence for a persisting cell-based compartmentalization of the adult zebrafish ventricle even in the absence of any physical boundary.


2017 ◽  
Author(s):  
Hajime Fukui ◽  
Takahiro Miyazaki ◽  
Hiroyuki Ishikawa ◽  
Hiroyuki Nakajima ◽  
Naoki Mochizuki

AbstractCardiac precursor cells (CPCs) in the first heart field (FHF) and the second heart field (SHF) present at both arterial and venous poles assemble to form a cardiac tube in zebrafish. Hippo kinase cascade is essential for proper heart formation; however, it remains elusive how Hippo signal contributes to early cardiac fate determination. We here demonstrate that mutants of large tumor suppressor kinase 1/2 (lats1/2) exhibited an increase in a SHF marker, Islet1 (Isl1)-positive and hand2 promoter-activated venous pole atrial cardiomyocytes (CMs) and that those showed expansion of the domain between between the anterior and the posterior lateral plate mesoderm. Consistently, TEAD-8 dependent transcription was activated in caudal region of the left ALPM cells that gave rise to the venous pole atrial CMs. Yap1/Wwtr1-promoted bmp2b expression was essential for Smad-regulated hand2 expression in the left ALPM, indicating that Hippo signaling restricts the SHF cells originating from the left ALPM that move toward the venous pole.


2017 ◽  
Author(s):  
Hajime Fukui ◽  
Takahiro Miyazaki ◽  
Renee Wei-Yan Chow ◽  
Hiroyuki Ishikawa ◽  
Hiroyuki Nakajima ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Hajime Fukui ◽  
Takahiro Miyazaki ◽  
Renee Wei-Yan Chow ◽  
Hiroyuki Ishikawa ◽  
Hiroyuki Nakajima ◽  
...  

The differentiation of the lateral plate mesoderm cells into heart field cells constitutes a critical step in the development of cardiac tissue and the genesis of functional cardiomyocytes. Hippo signaling controls cardiomyocyte proliferation, but the role of Hippo signaling during early cardiogenesis remains unclear. Here, we show that Hippo signaling regulates atrial cell number by specifying the developmental potential of cells within the anterior lateral plate mesoderm (ALPM), which are incorporated into the venous pole of the heart tube and ultimately into the atrium of the heart. We demonstrate that Hippo signaling acts through large tumor suppressor kinase 1/2 to modulate BMP signaling and the expression of hand2, a key transcription factor that is involved in the differentiation of atrial cardiomyocytes. Collectively, these results demonstrate that Hippo signaling defines venous pole cardiomyocyte number by modulating both the number and the identity of the ALPM cells that will populate the atrium of the heart.


Development ◽  
1997 ◽  
Vol 124 (9) ◽  
pp. 1631-1642 ◽  
Author(s):  
P.P. Tam ◽  
M. Parameswaran ◽  
S.J. Kinder ◽  
R.P. Weinberger

The cardiogenic potency of cells in the epiblast of the early primitive-streak stage (early PS) embryo was tested by heterotopic transplantation. The results of this study show that cells in the anterior and posterior epiblast of the early PS-stage embryos have similar cardiogenic potency, and that they differentiated to heart cells after they were transplanted directly to the heart field of the late PS embryo. That the epiblast cells can acquire a cardiac fate without any prior act of ingression through the primitive streak or movement within the mesoderm suggests that neither morphogenetic event is critical for the specification of the cardiogenic fate. The mesodermal cells that have recently ingressed through the primitive streak can express a broad cell fate that is characteristic of the pre-ingressed cells in the host when they were returned to the epiblast. However, mesoderm cells that have ingressed through the primitive streak did not contribute to the lateral plate mesoderm after transplantation back to the epiblast, implying that some restriction of lineage potency may have occurred during ingression. Early PS stage epiblast cells that were transplanted to the epiblast of the mid PS host embryos colonised the embryonic mesoderm but not the extraembryonic mesoderm. This departure from the normal cell fate indicates that the allocation of epiblast cells to the mesodermal lineages is dependent on the timing of their recruitment to the primitive streak and the morphogenetic options that are available to the ingressing cells at that instance.


Sign in / Sign up

Export Citation Format

Share Document