A role for sustained MAPK activity in the mouse ventral telencephalon

Author(s):  
Mary Jo Talley ◽  
Diana Nardini ◽  
Shenyue Qin ◽  
Carlos E. Prada ◽  
Lisa A. Ehrman ◽  
...  
Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 227-234 ◽  
Author(s):  
Dharminder Chauhan ◽  
Surender Kharbanda ◽  
Atsushi Ogata ◽  
Mitsuyoshi Urashima ◽  
Gerrard Teoh ◽  
...  

Abstract Fas belongs to the family of type-1 membrane proteins that transduce apoptotic signals. In the present studies, we characterized signaling during Fas-induced apoptosis in RPMI-8226 and IM-9 multiple myeloma (MM) derived cell lines as well as patient plasma cell leukemia cells. Treatment with anti-Fas (7C11) monoclonal antibody (MoAb) induced apoptosis, evidenced by internucleosomal DNA fragmentation and propidium iodide staining, and was associated with increased expression of c-jun early response gene. We also show that anti-Fas MoAb treatment is associated with activation of stress-activated protein kinase (SAPK) and p38 mitogen-activated protein kinase (MAPK); however, no detectable increase in extracellular signal-regulated kinases (ERK1 and ERK2) activity was observed. Because interleukin-6 (IL-6) is a growth factor for MM cells and inhibits apoptosis induced by dexamethasone and serum starvation, we examined whether IL-6 affects anti-Fas MoAb-induced apoptosis and activation of SAPK or p38 MAPK in MM cells. Culture of MM cells with IL-6 before treatment with anti-Fas MoAb significantly reduced both DNA fragmentation and activation of SAPK, without altering induction of p38 MAPK activity. These results therefore suggest that anti-Fas MoAb-induced apoptosis in MM cells is associated with activation of SAPK, and that IL-6 may both inhibit apoptosis and modulate SAPK activity.


2015 ◽  
Vol 593 (24) ◽  
pp. 5269-5282 ◽  
Author(s):  
Petra Dames ◽  
Theresa Bergann ◽  
Anja Fromm ◽  
Roland Bücker ◽  
Christian Barmeyer ◽  
...  

2002 ◽  
Vol 159 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Ti Cai ◽  
Keigo Nishida ◽  
Toshio Hirano ◽  
Paul A. Khavari

În epidermis, Ras can influence proliferation and differentiation; however, regulators of epidermal Ras function are not fully characterized, and Ras effects on growth and differentiation are controversial. EGF induced Ras activation in epidermal cells along with phosphorylation of the multisubstrate docking protein Gab1 and its binding to SHP-2. Expression of mutant Gab1Y627F deficient in SHP-2 binding or dominant-negative SHP-2C459S reduced basal levels of active Ras and downstream MAPK proteins and initiated differentiation. Differentiation triggered by both Gab1Y627F and SHP-2C459S could be blocked by coexpression of active Ras, consistent with Gab1 and SHP-2 action upstream of Ras in this process. To study the role of Gab1 and SHP-2 in tissue, we generated human epidermis overexpressing active Gab1 and SHP-2. Both proteins stimulated proliferation. In contrast, Gab1Y627F and SHP-2C459S inhibited epidermal proliferation and enhanced differentiation. Consistent with a role for Gab1 and SHP-2 in sustaining epidermal Ras/MAPK activity, Gab1−/− murine epidermis displayed lower levels of active Ras and MAPK with postnatal Gab1−/− epidermis, demonstrating the hypoplasia and enhanced differentiation seen previously with transgenic epidermal Ras blockade. These data provide support for a Ras role in promoting epidermal proliferation and opposing differentiation and indicate that Gab1 and SHP-2 promote the undifferentiated epidermal cell state by facilitating Ras/MAPK signaling.


2018 ◽  
Vol 99 ◽  
pp. 28-40 ◽  
Author(s):  
Zhe Wang ◽  
Yukiko Nakayama ◽  
Sachiko Tsuda ◽  
Kyo Yamasu

2003 ◽  
Vol 270 (19) ◽  
pp. 3891-3903 ◽  
Author(s):  
Merlijn Bazuine ◽  
D. Margriet Ouwens ◽  
Daan S. Gomes de Mesquita ◽  
J. Antonie Maassen

2012 ◽  
Vol 100A (11) ◽  
pp. 2921-2928 ◽  
Author(s):  
Devina Jaiswal ◽  
Justin L. Brown

FEBS Letters ◽  
2017 ◽  
Vol 591 (24) ◽  
pp. 3942-3959 ◽  
Author(s):  
Miguel Turrero García ◽  
Corey C. Harwell

1999 ◽  
Vol 19 (4) ◽  
pp. 2763-2772 ◽  
Author(s):  
Francesc Viñals ◽  
Jacques Pouysségur

ABSTRACT Like other cellular models, endothelial cells in cultures stop growing when they reach confluence, even in the presence of growth factors. In this work, we have studied the effect of cellular contact on the activation of p42/p44 mitogen-activated protein kinase (MAPK) by growth factors in mouse vascular endothelial cells. p42/p44 MAPK activation by fetal calf serum or fibroblast growth factor was restrained in confluent cells in comparison with the activity found in sparse cells. Consequently, the induction of c-fos, MAPK phosphatases 1 and 2 (MKP1/2), and cyclin D1 was also restrained in confluent cells. In contrast, the activation of Ras and MEK-1, two upstream activators of the p42/p44 MAPK cascade, was not impaired when cells attained confluence. Sodium orthovanadate, but not okadaic acid, restored p42/p44 MAPK activity in confluent cells. Moreover, lysates from confluent 1G11 cells more effectively inactivated a dually phosphorylated active p42 MAPK than lysates from sparse cells. These results, together with the fact that vanadate-sensitive phosphatase activity was higher in confluent cells, suggest that phosphatases play a role in the down-regulation of p42/p44 MAPK activity. Enforced long-term activation of p42/p44 MAPK by expression of the chimera ΔRaf-1:ER, which activates the p42/p44 MAPK cascade at the level of Raf, enhanced the expression of MKP1/2 and cyclin D1 and, more importantly, restored the reentry of confluent cells into the cell cycle. Therefore, inhibition of p42/p44 MAPK activation by cell-cell contact is a critical step initiating cell cycle exit in vascular endothelial cells.


1995 ◽  
Vol 15 (12) ◽  
pp. 6686-6693 ◽  
Author(s):  
A M MacNicol ◽  
A J Muslin ◽  
E L Howard ◽  
A Kikuchi ◽  
M C MacNicol ◽  
...  

The Raf-1 gene product is activated in response to cellular stimulation by a variety of growth factors and hormones. Raf-1 activity has been implicated in both cellular differentiation and proliferation. We have examined the regulation of the Raf-1/MEK/MAP kinase (MAPK) pathway during embryonic development in the frog Xenopus laevis. We report that Raf-1, MEK, and MAPK activities are turned off following fertilization and remain undetectable up until blastula stages (stage 8), some 4 h later. Tight regulation of the Raf-1/MEK/MAPK pathway following fertilization is crucial for embryonic cell cycle progression. Inappropriate reactivation of MAPK activity by microinjection of oncogenic Raf-1 RNA results in metaphase cell cycle arrest and, consequently, embryonic lethality. Our findings demonstrate an absolute requirement, in vivo, for inactivation of the MAPK signaling pathway to allow normal cell cycle progression during the period of synchronous cell divisions which occur following fertilization. Further, we show that cytostatic factor effects are mediated through MEK and MAPK.


Sign in / Sign up

Export Citation Format

Share Document