Ubiquitin-specific protease 19 regulates the stability of the E3 ubiquitin ligase MARCH6

2014 ◽  
Vol 328 (1) ◽  
pp. 207-216 ◽  
Author(s):  
Nobuhiro Nakamura ◽  
Kumi Harada ◽  
Masako Kato ◽  
Shigehisa Hirose
2019 ◽  
Vol 509 (2) ◽  
pp. 348-353 ◽  
Author(s):  
Hui Wang ◽  
Donghong Ju ◽  
Dhong-Hyo Kho ◽  
Huanjie Yang ◽  
Li Li ◽  
...  

2020 ◽  
Vol 117 (24) ◽  
pp. 13792-13799 ◽  
Author(s):  
Noel Blanco-Touriñán ◽  
Martina Legris ◽  
Eugenio G. Minguet ◽  
Cecilia Costigliolo-Rojas ◽  
María A. Nohales ◽  
...  

DELLA transcriptional regulators are central components in the control of plant growth responses to the environment. This control is considered to be mediated by changes in the metabolism of the hormones gibberellins (GAs), which promote the degradation of DELLAs. However, here we show that warm temperature or shade reduced the stability of a GA-insensitive DELLA allele inArabidopsis thaliana. Furthermore, the degradation of DELLA induced by the warmth preceded changes in GA levels and depended on the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). COP1 enhanced the degradation of normal and GA-insensitive DELLA alleles when coexpressed inNicotiana benthamiana.DELLA proteins physically interacted with COP1 in yeast, mammalian, and plant cells. This interaction was enhanced by the COP1 complex partner SUPRESSOR OFphyA-1051 (SPA1). The level of ubiquitination of DELLA was enhanced by COP1 and COP1 ubiquitinated DELLA proteins in vitro. We propose that DELLAs are destabilized not only by the canonical GA-dependent pathway but also by COP1 and that this control is relevant for growth responses to shade and warm temperature.


2014 ◽  
Vol 26 (7) ◽  
pp. 1532-1538 ◽  
Author(s):  
Xi Chen ◽  
Jianjun Shen ◽  
Xingyu Li ◽  
Xi Wang ◽  
Min Long ◽  
...  

2017 ◽  
Vol 38 (2) ◽  
Author(s):  
Lisheng Li ◽  
Hong Yang ◽  
Yan He ◽  
Ting Li ◽  
Jinan Feng ◽  
...  

ABSTRACT The c- Jun gene encodes a transcription factor that has been implicated in many physiological and pathological processes. c-Jun is a highly unstable protein that is degraded through a ubiquitination/proteasome-dependent mechanism. However, the deubiquitinating enzyme (DUB) that regulates the stability of the c-Jun protein requires further investigation. Here, by screening a DUB expression library, we identified ubiquitin-specific protease 6 (USP6) and showed that it regulates the stability of the c-Jun protein in a manner depending on its enzyme activity. USP6 interacts with c-Jun and antagonizes its ubiquitination. USP6 overexpression upregulates the activity of the downstream signaling pathway mediated by c-Jun/AP-1 and promotes cell invasion. Moreover, many aberrant genes that are upregulated in USP6 translocated nodular fasciitis are great potential targets regulated by c-Jun. Based on our data, USP6 is an enzyme that deubiquitinates c-Jun and regulates its downstream cellular functions.


2019 ◽  
Author(s):  
Vineeth Vengayil ◽  
Sunil Laxman

AbstractCells use multiple mechanisms to regulate their metabolic states depending on changes in their nutrient environment. A well-known example is the response of cells to glucose availability. In S. cerevisiae cells growing in glucose-limited medium, the re-availability of glucose leads to the downregulation of gluconeogenesis, the activation of glycolysis, and robust ‘glucose repression’. However, our knowledge of the initial mechanisms mediating this glucose-dependent downregulation of the gluconeogenic transcription factors is incomplete. We used the gluconeogenic transcription factor Rds2 as a candidate with which to discover regulators of early events leading to glucose repression. Here, we identify a novel role for the E3 ubiquitin ligase Pib1 in regulating the stability and degradation of Rds2. Glucose addition to glucose-limited cells results in rapid ubiquitination of Rds2, followed by its proteasomal degradation. Through in vivo and in vitro experiments, we establish Pib1 as a ubiquitin E3 ligase that regulates Rds2 ubiquitination and stability. Notably, this Pib1 mediated Rds2 ubiquitination, followed by proteasomal degradation, is specific to the presence of glucose. Pib1 is required for complete glucose repression, and enables cells to optimally grow in competitive environments when glucose becomes re-available. Our results reveal the existence of a Pib1 E3-ubiquitin ligase mediated regulatory program that mediates glucose-repression when glucose availability is restored.


2017 ◽  
Vol 28 (9) ◽  
pp. 1271-1283 ◽  
Author(s):  
Hsuan-Chung Ho ◽  
Jason A. MacGurn ◽  
Scott D. Emr

Endocytic down-regulation of cell-surface proteins is a fundamental cellular process for cell survival and adaptation to environmental stimuli. Ubiquitination of cargo proteins serves as the sorting signal for downstream trafficking and relies on the arrestin-related trafficking adaptor (ART)-Rsp5 ubiquitin ligase adaptor network in yeast. Hence proper regulation of the abundance and activity of these ligase–adaptor complexes is critical for main­tenance of optimal plasma membrane protein composition. Here we report that the stability of ARTs is regulated by the deubiquitinating enzymes (DUBs) Ubp2 and Ubp15. By counteracting the E3 ubiquitin ligase Rsp5, Ubp2 and Ubp15 prevent hyperubiquitination and proteasomal degradation of ARTs. Specifically, we show that loss of both Ubp2 and Ubp15 results in a defect in Hxt6 endocytosis associated with Art4 instability. Our results uncover a novel function for DUBs in the endocytic pathway by which Ubp2 and Ubp15 positively regulate the ART-Rsp5 network.


2013 ◽  
Vol 433 (4) ◽  
pp. 390-395 ◽  
Author(s):  
Kelly Velasco ◽  
Bin Zhao ◽  
Simone Callegari ◽  
Mikael Altun ◽  
Haiyin Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document