downstream signaling pathway
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 2)

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1650
Author(s):  
Su Jin Lee ◽  
Ji Eun Kim ◽  
Yun Ju Choi ◽  
Jeong Eun Gong ◽  
You Jeong Jin ◽  
...  

The efficacy of α-cubebenol isolated from Schisandra chinensis has been studied in several diseases, including cecal ligation, puncture challenge-induced sepsis, and degranulation of neutrophils. To identify the novel functions of α-cubebenol on lipid metabolism, alterations on the regulation of lipogenesis, lipolysis, and inflammatory response were observed in 3T3-L1 adipocytes treated with α-cubebenol. Most lipogenic targets, including lipid accumulation, level of lipogenic transcription factors, and expression of lipogenic regulators, were suppressed in MDI (3-isobutyl-1-methylxanthine, dexamethasone, and insulin)-stimulated 3T3-L1 adipocytes treated with α-cubebenol without significant cytotoxicity. In addition, similar inhibition effects were observed in the iNOS-induced COX-2 mediated pathway and NLRP3 inflammasome pathway of MDI-stimulated 3T3-L1 cells treated with α-cubebenol. Lipolytic targets, such as cAMP concentration, expression of adenylyl cyclase and PDE4, and their downstream signaling pathway, in MDI-stimulated 3T3-L1 cells were stimulated by the α-cubebenol treatment. The levels of transcription factors and related proteins for β-oxidation were significantly higher in the MDI + α-cubebenol treated group than in the MDI + Vehicle treated group. These results show that α-cubebenol has a novel role as a lipogenesis inhibitor, lipolysis and β-oxidation stimulator, and inflammasome suppressor in MDI-stimulated 3T3-L1 adipocytes.


Human Cell ◽  
2021 ◽  
Author(s):  
Yinping Huo ◽  
Tangfeng Lv ◽  
Mingxiang Ye ◽  
Suhua Zhu ◽  
Jiaxin Liu ◽  
...  

AbstractStudies have confirmed that circular RNA (circRNA) has a stable closed structure, which plays an important role in the progression of tumors. Cancers with positive fusion genes can produce associated fusion circRNA (F-cirRNA). However, there are no reports concerning a role for F-circRNA of the echinoderm microtubule associated-protein like 4-anaplastic lymphoma kinase variant 1 (EML4-ALK1) in non-small cell lung cancer (NSCLC). Our study confirmed the existence of fusion circEA1 (F-circEA1) in NCI-H3122 cells (carrying the EML4-ALK1 gene), F-circEA1 was expressed both in the cytoplasm and nucleus as determined by fluorescence in situ hybridization (FISH) and Sanger sequencing. CCK8 and transwell assays showed that F-circEA1 was beneficial to cell proliferation, metastasis, and invasion. Overexpression of F-circEA1 can also promote cell proliferation, migration and invasion in A549 and SPCA1 cells (non-small cell lung cancer cell line not carrying the EML4-ALK1 gene). Interference with F-circEA1, induced cell cycle arrest and promoted apoptosis as determined by flow cytometry, and increased drug sensitivity to crizotinib in H3122 cells. F-circEA1 directly affected the expression of parental gene EML4-ALK1. Further research found that F-circEA1 can affect the downstream signaling pathway of ALK. In vivo, the growth rate of xenogeneic tumors was reduced and the protein expression level of EML4-ALK1 was significantly decreased in transplanted tumors measured by immunohistochemistry (IHC) after interference with F-circEA1. In conclusion, F-circEA1 can be considered as a proto-oncogene that regulates cell proliferation and apoptosis by affecting the expression of the parental gene EML4-ALK1 and its ALK downstream signaling pathway in non-small cell lung cancer.


2021 ◽  
Vol 15 ◽  
Author(s):  
Libia Catalina Salinas Castellanos ◽  
Osvaldo Daniel Uchitel ◽  
Carina Weissmann

Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases as well as pain conditions. Classically, ASICs are described as transiently activated by a reduced pH, followed by desensitization; the activation allows sodium influx, and in the case of ASIC1a-composed channels, also calcium to some degree. Several factors are emerging and extensively analyzed as modulators, activating, inhibiting, and potentiating specific channel subunits. However, the signaling pathways triggered by channel activation are only starting to be revealed.The channel has been recently shown to be activated through a mechanism other than proton-mediated. Indeed, the large extracellular loop of these channels opens the possibility that other non-proton ligands might exist. One such molecule discovered was a toxin present in the Texas coral snake venom. The finding was associated with the activation of the channel at neutral pH via the toxin and causing intense and unremitting pain.By using different pharmacological tools, we analyzed the downstream signaling pathway triggered either by the proton and non-proton activation for human, mouse, and rat ASIC1a-composed channels in in vitro models. We show that for all species analyzed, the non-protonic mode of activation determines the activation of the ERK signaling cascade at a higher level and duration compared to the proton mode.This study adds to the growing evidence of the important role ASIC1a channels play in different physiological and pathological conditions and also hints at a possible pathological mechanism for a sustained effect.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yali Xiao ◽  
He Zhu ◽  
Jiahui Lei ◽  
Jing Xie ◽  
Ke Wu ◽  
...  

Abstract Background and Objectives Asthma is a chronic inflammatory airway disease and brings heavy economic and spiritual burdens to patients’ families and the society. Airway smooth muscle cells (ASMCs) affect the development of asthma by secreting cytokines, growth factors, and prostates. The stress-inducing protein, Sestrin2, plays a vital role in antioxidant defense. The aim of this study is to investigate the role of Sestrin2 in asthma and its corresponding molecular mechanism. Materials and Methods Airway remodeling was induced by construction of asthma rat model. Primary ASMCs were isolated through combining tissue block adherence and enzymatic digestion and identified by immunofluorescence staining. Gene expression was measured by quantitative real-time PCR (qPCR) and western blot (WB) experiments. Cell viability, proliferation, migration, and calcium flow of ASMCs were measured by Cell Counting Kit-8 (CCK-8), 5-ethynyl-deoxyuridine (EdU), Transwell, and Fluo-3AM, respectively. The binding of miR-182 and Sestrin2 3′-untranslated region (3′-UTR) was measured by luciferase reporter system and RNA-binding protein immunoprecipitation (RIP) analysis. Results Sestrin2 expression was upregulated in asthma rat model and cell model. Overexpression of Sestrin2 enhanced the growth, migration, and calcium flow, and inversely, repression of Sestrin2 was reduced in ASMCs from the asthma group. MiR-182, one of the microRNAs (miRNAs) that possesses the potential to regulate Sestrin2, was downregulated in ASMCs from the asthma group. Further experiments revealed that Sestrin2 was inhibited by miR-182 and that overexpression of Sestrin2 reversed the miR-182–induced inhibition of the cellular progression of ASMCs from the asthma group. This study further investigated the downstream signaling pathway of Sestrin2 and found that increased expression of Sestrin2 activated 5′-adenosine monophosphate-activated protein kinase (AMPK), leading to the inactivation of mammalian target of rapamycin (mTOR) and thus promoting the growth, migration, and calcium flow of ASMCs from the asthma group. Conclusion This study investigated the role of Sestrin2 for the first time and further dissected the regulatory factor of Sestrin2, ultimately elucidating the downstream signaling pathway of Sestrin2 in asthma, providing a novel pathway, and improving the understanding of the development and progression of asthma.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3410
Author(s):  
Ashley N. Sigafoos ◽  
Brooke D. Paradise ◽  
Martin E. Fernandez-Zapico

The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3b, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3b) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.


2021 ◽  
Vol 22 (10) ◽  
pp. 5203
Author(s):  
Lucia Garcia-Garcia ◽  
Laia Olle ◽  
Margarita Martin ◽  
Jordi Roca-Ferrer ◽  
Rosa Muñoz-Cano

Adenosine is a nucleoside involved in the pathogenesis of allergic diseases. Its effects are mediated through its binding to G protein-coupled receptors: A1, A2a, A2b and A3. The receptors differ in the type of G protein they recruit, in the effect on adenylyl cyclase (AC) activity and the downstream signaling pathway triggered. Adenosine can produce both an enhancement and an inhibition of mast cell degranulation, indicating that adenosine effects on these receptors is controversial and remains to be clarified. Depending on the study model, A1, A2b, and A3 receptors have shown anti- or pro-inflammatory activity. However, most studies reported an anti-inflammatory activity of A2a receptor. The precise knowledge of the adenosine mechanism of action may allow to develop more efficient therapies for allergic diseases by using selective agonist and antagonist against specific receptor subtypes.


2021 ◽  
Author(s):  
Zhiyan Hu ◽  
Jiaxian Zhu ◽  
Yidan Ma ◽  
Ting Long ◽  
Lingfang Gao ◽  
...  

Abstract Background CIP4 (Cdc42-interacting protein 4), a member of the F-BAR family which plays an important role in regulating cell membrane and actin, has been reported to interact with Cdc42 and closely associated with tumor invadopodia formation. However, the specific mechanism of the interaction between CIP4 and Cdc42 as well as the downstream signaling pathway in response in colorectal cancer (CRC) remains unknown, which is worth exploring for its impact on tumor infiltration and metastasis. Methods Immunohistochemistry and western blot analyses were performed to detect the expression of CIP4 and Cdc42. Their relationship with CRC clinicopathological characteristics was further analyzed. Wound-healing, transwell migration and invasion assays tested the effect of CIP4 on cells migration and invasion ability in vitro, and the orthotopic xenograft colorectal cancer mouse mode evaluated the tumor metastasis in vivo. The invadopodia formation and function were assessed by immunofluorescence, scanning electron microscopy (SEM) and matrix degradation assay. The interaction between CIP4 and Cdc42 was confirmed by co-immunoprecipitation (co-IP) and GST-Pull down assays. Immunofluorescence was used to observed the colocalization of CIP4, GTP-Cdc42 and invadopodia. The related downstream signaling pathway was investigated by western blot and immunofluorescence. Results CIP4 expression was significantly higher in human colorectal cancer tissues and correlated with the CRC infiltrating depth and metastasis as well as the lower survival rate in patients. In cultured CRC cells, knockdown of CIP4 inhibited cell migration and invasion ability in vitro and the tumor metastasis in vivo, while overexpression of CIP4 confirmed the opposite situation by promoting invadopodia formation and matrix degradation ability. In addition, we identified GTP-Cdc42 as a directly interactive protein of CIP4, which was upregulated and recruited by CIP4 to participate in this process. Furthermore, activated NF-κB signaling pathway was found in CIP4 overexpression CRC cells contributing to invadopodia formation while inhibition of either CIP4 or Cdc42 led to suppression of NF-κB pathway resulted in decrease quantity of invadopodia. Conclusion Our findings suggested that CIP4 targets to recruit GTP-Cdc42 and directly combines with it to accelerate invadopodia formation and function by activating NF-κB signaling pathway, thus promoting CRC infiltration and metastasis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shiqi Long ◽  
Yangzhuo Gu ◽  
Yuanyuan An ◽  
Xiaojin Lin ◽  
Xiaoqing Chen ◽  
...  

Abstract Background Cetuximab has been approved for use for first-line treatment of patients with wild-type KRAS metastatic colorectal cancer (CRC). However, treatment with cetuximab has shown limited efficacy as a CRC monotherapy. In addition, natural killer (NK) cell function is known to be severely attenuated in cancer patients. The goal of this study was to develop a new strategy to enhance antibody-dependent cell-mediated cytotoxicity (ADCC) mediated by NK cells, in combination with cetuximab against CRC cells. Methods Ex vivo expanded NK cells were stimulated with reovirus, and reovirus-activated NK cells mediated ADCC assay were performed on CRC cells in combination with cetuximab. The synergistic antitumor effects of reovirus-activated NK cells and cetuximab were tested on DLD-1 tumor-bearing mice. Finally, Toll-like receptor 3 (TLR3) knockdown in NK cells, along with chemical blockade of TLR3/dsRNA complex, and inhibition of the TLR3 downstream signaling pathway, were performed to explore the mechanisms by which reovirus enhances NK cell cytotoxicity. Results We first confirmed that exposure of NK cells to reovirus enhanced their cytotoxicity in a dose-dependent manner.We then investigated whether reovirus-activated NK cells exposed to cetuximab-bound CRC cells exhibited greater anti-tumor efficacy than either monotherapy. Co-culture of CRC cell lines with reovirus-activated NK cells indicated that NK cytotoxicity was significantly higher in combination with cetuximab, regardless of KRAS mutation status or EGFR expression level. We also found that reovirus activation of NK cells, in conjunction with cetuximab, resulted in significantly stronger anti-tumor efficacy.Finally, TLR3 knockdown, inhibition of TLR3/dsRNA complex or TBK1/IKKε demonstrated that activation of NK cells by reovirus was dependent on TLR3 and its downstream signaling pathway. Conclusions This study demonstrated that combination treatment of reovirus-activated NK cells with cetuximab synergistically enhances their anti-tumor cytotoxicity, suggesting a strong candidate strategy for clinical treatment of CRC.


2021 ◽  
Author(s):  
Yun Ju Choi ◽  
Ji Eun Kim ◽  
Su Jin Lee ◽  
Jeong Eun Gong ◽  
Ho Lee ◽  
...  

Abstract The current study measured alterations in the inducible nitric oxide synthase (iNOS)‑mediated cyclooxygenase‑2 (COX‑2) induction pathway, inflammasome pathway, NF-kB activation, and inflammatory cytokine expressions in the transverse colon of C3 knockout (KO) mice, to determine whether complement component 3 (C3) deficiency affects its receptor downstream-mediated inflammatory response. Compared to wild type (WT) mice, the expression level of C3 protein was successfully suppressed in the transverse colon of C3 KO mice. Significant enhancement was observed in expression levels of important members of the iNOS‑mediated COX‑2 induction pathway, and in the phosphorylation of mitogen‑activated protein (MAP) kinase members. Also, a similar pattern of increase was observed in the expression levels of inflammasome proteins in C3 KO mice. Moreover, compared to WT mice, C3 KO mice showed remarkably enhanced phosphorylation of NF-kB and IkB-a, which was reflected in entirety as increased expressions of TNF-a, IL-6 and IL-1a. Taken together, results of the current study indicate that C3 deficiency induces activation of the iNOS‑mediated COX‑2 induction pathway, ASC-inflammasome pathway, and NF-kB signaling pathway, resulting in the enhancement of inflammatory cytokine expressions in the transverse colon of C3 KO mice.


Sign in / Sign up

Export Citation Format

Share Document