The ubiquitin specific protease USP34 protects the ubiquitin ligase gp78 from proteasomal degradation

2019 ◽  
Vol 509 (2) ◽  
pp. 348-353 ◽  
Author(s):  
Hui Wang ◽  
Donghong Ju ◽  
Dhong-Hyo Kho ◽  
Huanjie Yang ◽  
Li Li ◽  
...  
2016 ◽  
Vol 311 (5) ◽  
pp. F1035-F1046 ◽  
Author(s):  
Kapil Sareen-Khanna ◽  
Joan Papillon ◽  
Simon S. Wing ◽  
Andrey V. Cybulsky

Kidney cell injury may be associated with protein misfolding and induction of endoplasmic reticulum (ER) stress. Examples include complement-induced glomerular epithelial cell (GEC)/podocyte injury in membranous nephropathy and ischemia-reperfusion injury. Renal cell injury can also result from mutations in integral proteins, which lead to their misfolding and accumulation. Certain nephrin missense mutants misfold, accumulate in the ER, and induce ER stress. We examined if enhancement of ubiquitin-proteasome system function may facilitate proteostasis and confer protection against injury. Ubiquitin-specific protease 14 (Usp14) is reported to retard proteasomal protein degradation. Thus inhibition of Usp14 may enhance degradation of misfolded proteins and attenuate cell injury. In GEC, the reporter proteins GFPu (a “misfolded” protein) and CD3δ (an ER-associated degradation substrate) undergo time-dependent proteasomal degradation. Complement did not affect degradation of CD3δ-yellow fluorescent protein (YFP), but accelerated degradation of GFPu, and the Usp14-directed inhibitor IU1 further accelerated this degradation. Conversely, overexpression of Usp14 reduced degradation of GFPu and CD3δ-YFP. In 293T cells, IU1 did not enhance degradation of disease-associated nephrin missense mutants I171N and S724C, whereas overexpression of Usp14 reduced degradation. IU1 was cytoprotective after injury induced by the ER stressor tunicamycin and in vitro ischemia-reperfusion, but did not affect complement-induced cytotoxicity. In conclusion, Usp14 controls proteasomal degradation of some misfolded proteins. In addition, a Usp14-directed inhibitor reduces cytotoxicity in the context of global protein misfolding during certain types of renal cell injury.


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1292-1301 ◽  
Author(s):  
Daniela Flügel ◽  
Agnes Görlach ◽  
Thomas Kietzmann

Abstract The hypoxia-inducible transcription factor-1α (HIF-1α) is a major regulator of angiogenesis, carcinogenesis, and various processes by which cells adapt to hypoxic conditions. Therefore, the identification of critical players regulating HIF-1α is not only important for the understanding of angiogenesis and different cancer phenotypes, but also for unraveling new therapeutic options. We report a novel mechanism by which HIF-1α is degraded after glycogen synthase kinase-3 (GSK-3)–induced phosphorylation and recruitment of the ubiquitin ligase and tumor suppressor F-box and WD protein Fbw7. Further, experiments with GSK-3β and Fbw7-deficient cells revealed that GSK-3β and Fbw7-dependent HIF-1α degradation can be antagonized by ubiquitin-specific protease 28 (USP28). In agreement with this, Fbw7 and USP28 reciprocally regulated cell migration and angiogenesis in an HIF-1α–dependent manner. Therefore, we have identified a new pathway that could be targeted at the level of GSK-3, Fbw7, or USP28 to influence HIF-1α–dependent processes like angiogenesis and metastasis.


2014 ◽  
Vol 328 (1) ◽  
pp. 207-216 ◽  
Author(s):  
Nobuhiro Nakamura ◽  
Kumi Harada ◽  
Masako Kato ◽  
Shigehisa Hirose

2019 ◽  
Author(s):  
Chin-Mei Lee ◽  
Man-Wah Li ◽  
Ann Feke ◽  
Adam M. Saffer ◽  
Wei Liu ◽  
...  

AbstractTo remain synchronous with the environment, plants constantly survey daily light conditions using an array of photoreceptors and adjust their circadian rhythms accordingly. ZEITLUPE (ZTL), a blue light photoreceptor with E3 ubiquitin ligase activity, communicates end-of-day light conditions to the circadian clock. To function properly, ZTL protein must accumulate but not destabilize target clock transcription factors before dusk, while in the dark ZTL mediates degradation of target proteins. It is not clear how ZTL can accumulate to high levels in the light while its targets remain stable. Two deubiquitylating enzymes, UBIQUITIN-SPECIFIC PROTEASE 12 and UBIQUITIN-SPECIFIC PROTEASE 13 (UBP12 and UBP13), which have opposite genetic and biochemical functions to ZTL, were shown to associate with the ZTL protein complex. Here we demonstrate that the ZTL light-dependent interacting partner, GIGANTEA (GI), recruits UBP12 and UBP13 to the ZTL photoreceptor complex. We show that loss ofUBP12andUBP13reduces ZTL and GI protein levels through a post-transcriptional mechanism. Furthermore, the ZTL target protein TOC1 is unable to accumulate to normal levels inubpmutants, indicating that UBP12 and UBP13 are necessary to stabilize clock transcription factors during the day. Our results demonstrate that the ZTL photoreceptor complex contains both ubiquitin-conjugating and -deconjugating enzymes, and that these two opposing enzyme types are necessary for the complex to properly regulate the circadian clock. This work also shows that deubiquitylating enzymes are a core design element of circadian clocks that is conserved from plants to animals.


Author(s):  
Luis Gustavo Perez Rivas ◽  
Marily Theodoropoulou ◽  
Francesco Ferrau ◽  
Clara Nusser ◽  
Kohei Kawaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document