The transcription factor Krüppel homolog 1 is linked to the juvenile hormone-dependent maturation of sexual behavior in the male moth, Agrotis ipsilon

2012 ◽  
Vol 176 (2) ◽  
pp. 158-166 ◽  
Author(s):  
Line Duportets ◽  
Françoise Bozzolan ◽  
Antoine Abrieux ◽  
Annick Maria ◽  
Christophe Gadenne ◽  
...  
2015 ◽  
Vol 112 (12) ◽  
pp. 3740-3745 ◽  
Author(s):  
Jesus Lozano ◽  
Raúl Montañez ◽  
Xavier Belles

In 2009 we reported that depletion of Dicer-1, the enzyme that catalyzes the final step of miRNA biosynthesis, prevents metamorphosis inBlattella germanica. However, the precise regulatory roles of miRNAs in the process have remained elusive. In the present work, we have observed that Dicer-1 depletion results in an increase of mRNA levels of Krüppel homolog 1 (Kr-h1), a juvenile hormone-dependent transcription factor that represses metamorphosis, and that depletion of Kr-h1 expression in Dicer-1 knockdown individuals rescues metamorphosis. We have also found that the 3′UTR of Kr-h1 mRNA contains a functional binding site for miR-2 family miRNAs (for miR-2, miR-13a, and miR-13b). These data suggest that metamorphosis impairment caused by Dicer-1 and miRNA depletion is due to a deregulation of Kr-h1 expression and that this deregulation is derived from a deficiency of miR-2 miRNAs. We corroborated this by treating the last nymphal instar ofB. germanicawith an miR-2 inhibitor, which impaired metamorphosis, and by treating Dicer-1-depleted individuals with an miR-2 mimic to allow nymphal-to-adult metamorphosis to proceed. Taken together, the data indicate that miR-2 miRNAs scavenge Kr-h1 transcripts when the transition from nymph to adult should be taking place, thus crucially contributing to the correct culmination of metamorphosis.


2017 ◽  
Author(s):  
Ping Kang ◽  
Kai Chang ◽  
Ying Liu ◽  
Mark Bouska ◽  
Galina Karashchuk ◽  
...  

AbstractTranscriptional coordination is a vital process contributing to metabolic homeostasis. As one of the key nodes in the metabolic network, the forkhead transcription factor FOXO has been shown to interact with diverse transcription co-factors and integrate signals from multiple pathways to control metabolism, oxidative stress response, and cell cycle. Recently, insulin/FOXO signaling has been implicated in the regulation of insect development via the interaction with insect hormones, such as ecdysone and juvenile hormone. In this study, we identified an interaction between dFOXO and the zinc finger transcription factor Kruppel homolog 1 (Kr-h1), one of the key players in juvenile hormone signaling in Drosophila. We found that Kr-h1 mutants have reduced triglyceride storage, decreased insulin signaling and delayed larval development. Notably, Kr-h1 physically and genetically interacts with dFOXO in vitro and in vivo to regulate the transcriptional activation of adipose lipase brummer (bmm). The transcriptional co-regulation by Kr-h1 and dFOXO may represent a broad mechanism by which Kruppel-like factors integrate with insulin signaling to maintain metabolic homeostasis and coordinate organism growth.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 152
Author(s):  
Camille Meslin ◽  
Françoise Bozzolan ◽  
Virginie Braman ◽  
Solenne Chardonnet ◽  
Cédric Pionneau ◽  
...  

Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids such as clothianidin. The residual accumulation of low concentrations of these insecticides can have positive effects on target pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction and olfactory synaptic transmission is cholinergic, neonicotinoid residues could indeed modify chemical communication. We recently showed that treatments with low doses of clothianidin could induce hormetic effects on behavioral and neuronal sex pheromone responses in the male moth, Agrotis ipsilon. In this study, we used high-throughput RNAseq and proteomic analyses from brains of A. ipsilon males that were intoxicated with a low dose of clothianidin to investigate the molecular mechanisms leading to the observed hormetic effect. Our results showed that clothianidin induced significant changes in transcript levels and protein quantity in the brain of treated moths: 1229 genes and 49 proteins were differentially expressed upon clothianidin exposure. In particular, our analyses highlighted a regulation in numerous enzymes as a possible detoxification response to the insecticide and also numerous changes in neuronal processes, which could act as a form of acclimatization to the insecticide-contaminated environment, both leading to enhanced neuronal and behavioral responses to sex pheromone.


2010 ◽  
Vol 10 (1) ◽  
pp. 120 ◽  
Author(s):  
Hagai Shpigler ◽  
Harland M Patch ◽  
Mira Cohen ◽  
Yongliang Fan ◽  
Christina M Grozinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document