scholarly journals Global profiling of the gene expression and alternative splicing events during hypoxia-regulated chondrogenic differentiation in human cartilage endplate-derived stem cells

Genomics ◽  
2016 ◽  
Vol 107 (5) ◽  
pp. 170-177 ◽  
Author(s):  
Yuan Yao ◽  
Jin Shang ◽  
Weilin Song ◽  
Qiyue Deng ◽  
Huan Liu ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jin Shang ◽  
Xin Fan ◽  
Lei Shangguan ◽  
Huan Liu ◽  
Yue Zhou

Low back pain (LBP) is a very prevalent disease and degenerative disc diseases (DDDs) usually account for the LBP. However, the pathogenesis of DDDs is complicated and difficult to elucidate. Alternative splicing is a sophisticated regulatory process which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. In addition, the cartilage endplate-derived stem cells have been discovered and identified by our research group. In this paper, we continue to investigate gene expression profiling and alternative splicing events during chondrogenic differentiation of cartilage endplate-derived stem cells. We adopted Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) to compare the transcriptional and splicing changes between the control and differentiated samples. RT-PCR and quantitative PCR are used to validate the microarray results. The GO and KEGG pathway analysis was also performed. After bioinformatics analysis of the data, we detected 1953 differentially expressed genes. In terms of alternative splicing, the Splicing Index algorithm was used to select alternatively spliced genes. We detected 4411 alternatively spliced genes. GO and KEGG pathway analysis also revealed several functionally involved biological processes and signaling pathways. To our knowledge, this is the first study to investigate the alternative splicing mechanisms in chondrogenic differentiation of stem cells on a genome-wide scale.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1622
Author(s):  
Liang Xu ◽  
Hisatoshi Hanamatsu ◽  
Kentaro Homan ◽  
Tomohiro Onodera ◽  
Takuji Miyazaki ◽  
...  

Due to the limited intrinsic healing potential of cartilage, injury to this tissue may lead to osteoarthritis. Human induced pluripotent stem cells (iPSCs), which can be differentiated into chondrocytes, are a promising source of cells for cartilage regenerative therapy. Currently, however, the methods for evaluating chondrogenic differentiation of iPSCs are very limited; the main techniques are based on the detection of chondrogenic genes and histological analysis of the extracellular matrix. The cell surface is coated with glycocalyx, a layer of glycoconjugates including glycosphingolipids (GSLs) and glycoproteins. The glycans in glycoconjugates play important roles in biological events, and their expression and structure vary widely depending on cell types and conditions. In this study, we performed a quantitative GSL-glycan analysis of human iPSCs, iPSC-derived mesenchymal stem cell like cells (iPS-MSC like cells), iPS-MSC-derived chondrocytes (iPS-MSC-CDs), bone marrow-derived mesenchymal stem cells (BMSCs), and BMSC-derived chondrocytes (BMSC-CDs) using glycoblotting technology. We found that GSL-glycan profiles differed among cell types, and that the GSL-glycome underwent a characteristic alteration during the process of chondrogenic differentiation. Furthermore, we analyzed the GSL-glycome of normal human cartilage and found that it was quite similar to that of iPS-MSC-CDs. This is the first study to evaluate GSL-glycan structures on human iPS-derived cartilaginous particles under micromass culture conditions and those of normal human cartilage. Our results indicate that GSL-glycome analysis is useful for evaluating target cell differentiation and can thus support safe regenerative medicine.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51266 ◽  
Author(s):  
Erming Wang ◽  
Vahid Aslanzadeh ◽  
Filomena Papa ◽  
Haiyan Zhu ◽  
Pierre de la Grange ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document