scholarly journals DNA physical properties outperform sequence compositional information in classifying nucleosome-enriched and -depleted regions

Genomics ◽  
2019 ◽  
Vol 111 (5) ◽  
pp. 1167-1175 ◽  
Author(s):  
Guoqing Liu ◽  
Guo-Jun Liu ◽  
Jiu-Xin Tan ◽  
Hao Lin
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayari Takamura ◽  
Kaede Tsukamoto ◽  
Kenji Sakata ◽  
Jun Kikuchi

AbstractIntegrative measurement analysis of complex subjects, such as polymers is a major challenge to obtain comprehensive understanding of the properties. In this study, we describe analytical strategies to extract and selectively associate compositional information measured by multiple analytical techniques, aiming to reveal their relationships with physical properties of biopolymers derived from hair. Hair samples were analyzed by multiple techniques, including solid-state nuclear magnetic resonance (NMR), time-domain NMR, Fourier transform infrared spectroscopy, and thermogravimetric and differential thermal analysis. The measured data were processed by different processing techniques, such as spectral differentiation and deconvolution, and then converted into a variety of “measurement descriptors” with different compositional information. The descriptors were associated with the mechanical properties of hair by constructing prediction models using machine learning algorithms. Herein, the stepwise model refinement via selection of adopted descriptors based on importance evaluation identified the most contributive descriptors, which provided an integrative interpretation about the compositional factors, such as α-helix keratins in cortex; and bounded water and thermal resistant components in cuticle. These results demonstrated the efficacy of the present strategy to generate and select descriptors from manifold measured data for investigating the nature of sophisticated subjects, such as hair.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 966 ◽  
Author(s):  
Nozomu Suzuki ◽  
Yutaka Itabashi

A review. The question of homochirality is an intriguing problem in the field of chemistry, and is deeply related to the origin of life. Though amphiphiles and their supramolecular assembly have attracted less attention compared to biomacromolecules such as RNA and proteins, the lipid world hypothesis sheds new light on the origin of life. This review describes how amphiphilic molecules are possibly involved in the scenario of homochirality. Some prebiotic conditions relevant to amphiphilic molecules will also be described. It could be said that the chiral properties of amphiphilic molecules have various interesting features such as compositional information, spontaneous formation, the ability to exchange components, fission and fusion, adsorption, and permeation. This review aims to clarify the roles of amphiphiles regarding homochirality, and to determine what kinds of physical properties of amphiphilic molecules could have played a role in the scenario of homochirality.


2021 ◽  
Author(s):  
Ayari Takamura ◽  
Kaede Tsukamoto ◽  
Kenji Sakata ◽  
Jun Kikuchi

Abstract Integrative measurement analysis of complex subjects, such as polymers is a major challenge to obtain comprehensive understanding of the properties. In this study, we describe analytical strategies to extract and selectively associate compositional information measured by multiple analytical techniques, aiming to reveal their relationships with physical properties of biopolymers derived from hair. Hair samples were analyzed by multiple techniques, including solid-state nuclear magnetic resonance (NMR), time-domain NMR, Fourier transform infrared spectroscopy, and thermogravimetric and differential thermal analysis. The measured data were processed by different processing techniques, such as spectral differentiation and deconvolution, and then converted into a variety of “measurement descriptors” with different compositional information. The descriptors were associated with the mechanical properties of hair by constructing prediction models using machine learning algorithms. Herein, the stepwise model refinement based on importance evaluation identified the most contributive descriptors, which provided an integrative interpretation about the compositional factors, such as a-helix keratins in cortex; and bounded water and thermal resistant components in cuticle. These results demonstrated the efficacy of the present strategy to generate and select descriptors from manifold measured data for investigating the nature of sophisticated subjects, such as hair.


1976 ◽  
Vol 32 ◽  
pp. 365-377 ◽  
Author(s):  
B. Hauck
Keyword(s):  

The Ap stars are numerous - the photometric systems tool It would be very tedious to review in detail all that which is in the literature concerning the photometry of the Ap stars. In my opinion it is necessary to examine the problem of the photometric properties of the Ap stars by considering first of all the possibility of deriving some physical properties for the Ap stars, or of detecting new ones. My talk today is prepared in this spirit. The classification by means of photoelectric photometric systems is at the present time very well established for many systems, such as UBV, uvbyβ, Vilnius, Geneva and DDO systems. Details and methods of classification can be found in Golay (1974) or in the proceedings of the Albany Colloquium edited by Philip and Hayes (1975).


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Author(s):  
K.P.D. Lagerlof

Although most materials contain more than one phase, and thus are multiphase materials, the definition of composite materials is commonly used to describe those materials containing more than one phase deliberately added to obtain certain desired physical properties. Composite materials are often classified according to their application, i.e. structural composites and electronic composites, but may also be classified according to the type of compounds making up the composite, i.e. metal/ceramic, ceramic/ceramie and metal/semiconductor composites. For structural composites it is also common to refer to the type of structural reinforcement; whisker-reinforced, fiber-reinforced, or particulate reinforced composites [1-4].For all types of composite materials, it is of fundamental importance to understand the relationship between the microstructure and the observed physical properties, and it is therefore vital to properly characterize the microstructure. The interfaces separating the different phases comprising the composite are of particular interest to understand. In structural composites the interface is often the weakest part, where fracture will nucleate, and in electronic composites structural defects at or near the interface will affect the critical electronic properties.


Author(s):  
James Mark ◽  
Kia Ngai ◽  
William Graessley ◽  
Leo Mandelkern ◽  
Edward Samulski ◽  
...  
Keyword(s):  

1982 ◽  
Vol 85 (1) ◽  
pp. 257-263 ◽  
Author(s):  
A. Graja ◽  
M. Przybylski ◽  
B. Butka ◽  
R. Swietlik

2013 ◽  
Author(s):  
Kristina F. Pattison ◽  
Jennifer R. Laude ◽  
Thomas R. Zentall
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document