scholarly journals Possible Roles of Amphiphilic Molecules in the Origin of Biological Homochirality

Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 966 ◽  
Author(s):  
Nozomu Suzuki ◽  
Yutaka Itabashi

A review. The question of homochirality is an intriguing problem in the field of chemistry, and is deeply related to the origin of life. Though amphiphiles and their supramolecular assembly have attracted less attention compared to biomacromolecules such as RNA and proteins, the lipid world hypothesis sheds new light on the origin of life. This review describes how amphiphilic molecules are possibly involved in the scenario of homochirality. Some prebiotic conditions relevant to amphiphilic molecules will also be described. It could be said that the chiral properties of amphiphilic molecules have various interesting features such as compositional information, spontaneous formation, the ability to exchange components, fission and fusion, adsorption, and permeation. This review aims to clarify the roles of amphiphiles regarding homochirality, and to determine what kinds of physical properties of amphiphilic molecules could have played a role in the scenario of homochirality.

2016 ◽  
Vol 16 (1) ◽  
pp. 97-104 ◽  
Author(s):  
V.V. Matveev

AbstractA hypothesis is proposed about potassium ponds being the cradles of life enriches the gamut of ideas about the possible conditions of pre-biological evolution on the primeval Earth, but does not bring us closer to solving the real problem of the origin of life. The gist of the matter lies in the mechanism of making a delimitation between two environments – the intracellular environment and the habitat of protocells. Since the sodium–potassium pump (Na+/K+-ATPase) was discovered, no molecular model has been proposed for a predecessor of the modern sodium pump. This has brought into life the idea of the potassium pond, wherein protocells would not need a sodium pump. However, current notions of the operation of living cells come into conflict with even physical laws when trying to use them to explain the origin and functioning of protocells. Thus, habitual explanations of the physical properties of living cells have become inapplicable to explain the corresponding properties of Sidney Fox's microspheres. Likewise, existing approaches to solving the problem of the origin of life do not see the need for the comparative study of living cells and cell models, assemblies of biological and artificial small molecules and macromolecules under physical conditions conducive to the origin of life. The time has come to conduct comprehensive research into the fundamental physical properties of protocells and create a new discipline – protocell physiology or protophysiology – which should bring us much closer to solving the problem of the origin of life.


2011 ◽  
Vol 366 (1580) ◽  
pp. 2894-2901 ◽  
Author(s):  
Jack W. Szostak

The accumulation of pure, concentrated chemical building blocks, from which the essential components of protocells could be assembled, has long been viewed as a necessary, but extremely difficult step on the pathway to the origin of life. However, recent experiments have shown that moderately increasing the complexity of a set of chemical inputs can in some cases lead to a dramatic simplification of the resulting reaction products. Similarly, model protocell membranes composed of certain mixtures of amphiphilic molecules have superior physical properties than membranes composed of single amphiphiles. Moreover, membrane self-assembly under simple and natural conditions gives rise to heterogeneous mixtures of large multi-lamellar vesicles, which are predisposed to a robust pathway of growth and division that simpler and more homogeneous small unilamellar vesicles cannot undergo. Might a similar relaxation of the constraints on building block purity and homogeneity actually facilitate the difficult process of nucleic acid replication? Several arguments suggest that mixtures of monomers and short oligonucleotides may enable the chemical copying of polynucleotides of sufficient length and sequence complexity to allow for the emergence of the first nucleic acid catalysts. The question of the origin of life may become less daunting once the constraints of overly well-defined laboratory experiments are appropriately relaxed.


2016 ◽  
Vol 25 (2) ◽  
pp. 231-245 ◽  
Author(s):  
Natalia Szostak ◽  
Szymon Wasik ◽  
Jacek Blazewicz

According to some hypotheses, from a statistical perspective the origin of life seems to be a highly improbable event. Although there is no rigid definition of life itself, life as it is, is a fact. One of the most recognized hypotheses for the origins of life is the RNA world hypothesis. Laboratory experiments have been conducted to prove some assumptions of the RNA world hypothesis. However, despite some success in the ‘wet-lab’, we are still far from a complete explanation. Bioinformatics, supported by biomathematics, appears to provide the perfect tools to model and test various scenarios of the origins of life where wet-lab experiments cannot reflect the true complexity of the problem. Bioinformatics simulations of early pre-living systems may give us clues to the mechanisms of evolution. Whether or not this approach succeeds is still an open question. However, it seems likely that linking efforts and knowledge from the various fields of science into a holistic bioinformatics perspective offers the opportunity to come one step closer to a solution to the question of the origin of life, which is one of the greatest mysteries of humankind. This paper illustrates some recent advancements in this area and points out possible directions for further research.


Author(s):  
David W. Deamer

Alexander Ivanovich Oparin was first to consider the origin of life in strictly scientific terms. Oparin published The Origin of Life in 1924, in his native Russian language, and was active in the field for the next 50 years. During my initial field work in the volcanic regions of Kamchatka, organized with Vladimir Kompanichenko, we visited the Institute of Volcanology and Seismology in Petropavlovsk, and I happened to see the above quote painted on a wall near the entrance. Oparin’s proposal about how life can begin was intuitive because he had no experimental evidence as a foundation, but as our party rode in helicopters up and down the peninsula from one volcanic site to the next, I began to share his intuition. The focus of this chapter concerns the properties of water in contact with mineral surfaces heated by volcanism, inspired by what we saw in Kamchatka. Four billion years ago, as the global temperature decreased following the condensation of the ocean, there came a point at which the components required for the origin of life could assemble into systems of encapsulated polymers. Two alternative hydrothermal conditions have been proposed as sites where this could have occurred: salty seawater at submarine hydrothermal vents and freshwater circulating in hydrothermal fields associated with volcanic land masses. To weigh the alternatives, this chapter considers the chemical and physical properties of hydrothermal vents and hydrothermal fields and how each could contribute to the origin of cellular life. Questions to be addressed: What are the chemical and physical properties of hydrothermal vents? How do the properties of hydrothermal fields differ from those of vents? How are these properties related to the way that organic solutes can undergo physical and chemical interactions related to the origin of life? Suppose that an organic chemist decides to synthesize a new compound that involves making an ester bond. The chemist is provided with a solution of the two reactants such as acetic acid and ethanol, and then is given a choice: should the reaction be run in an ice bath or instead heated to boiling and refluxed?


Elements ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. 261-265 ◽  
Author(s):  
Yoshihiro Furukawa ◽  
Takeshi Kakegawa

According to the RNA World hypothesis, ribonucleic acid (RNA) played a critical role in the origin of life. However, ribose, an essential component of RNA, is easily degraded: finding a way to stabilize it is critical to the viability of the hypothesis. Borate has been experimentally shown to have a strong affinity for ribose, and, thus, could have protected ribose from degradation in the formose reaction, a potential process for prebiotic ribose formation. Accumulation of borate on Hadean Earth (prior to ~4,000 Ma) might have been a key step in the chemical evolution of the biotic sugar. Proto-arcs are suggested as a geological setting sufficiently rich in borate to stabilize ribose during the Hadean.


2004 ◽  
Vol 213 ◽  
pp. 321-324 ◽  
Author(s):  
Laura Guogas ◽  
James Hogle ◽  
Lee Gehrke

Central to understanding the origin of life is the elucidation of the first replication mechanism. The RNA World hypothesis suggests that the first self-replicating molecules were RNAs and that DNA later superceded RNA as the genetic material. RNA viruses were not subjected to the same evolutionary pressures as cellular organisms; consequently, they likely possess remnants of earlier replication strategies. Our laboratory investigates how members of the RNA virus family Bromoviridae can have structurally distinct 3' end tags yet are specifically recognized by conserved replication enzymes. This work addresses the idea that 3' tRNA tails were functionally replaced in some viruses by an RNA-protein complex. These viruses may serve as a timeline for the transition from the RNA world to DNA and protein based life.


Sign in / Sign up

Export Citation Format

Share Document