scholarly journals Comparative transcriptome analysis of rhizome nodes and internodes in Panax. japonicus var. major reveals candidate genes involved in the biosynthesis of triterpenoid saponins

Genomics ◽  
2020 ◽  
Vol 112 (2) ◽  
pp. 1112-1119 ◽  
Author(s):  
Shaopeng Zhang ◽  
Guang Wang ◽  
Tian Zuo ◽  
Xiaohai Zhang ◽  
Ran Xu ◽  
...  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zihan Liu ◽  
Sha Li ◽  
Wei Li ◽  
Qi Liu ◽  
Lingli Zhang ◽  
...  

Abstract Background Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of heterosis and various types of CMS often have different abortion mechanisms. Therefore, it is important to understand the molecular mechanisms related to anther abortion in wheat, which remain unclear at present. Results In this study, five isonuclear alloplasmic male sterile lines (IAMSLs) and their maintainer were investigated. Cytological analysis indicated that the abortion type was identical in IAMSLs, typical and stainable abortion, and the key abortive period was in the binucleate stage. Most of the 1,281 core shared differentially expressed genes identified by transcriptome sequencing compared with the maintainer in the vital abortive stage were involved in the metabolism of sugars, oxidative phosphorylation, phenylpropane biosynthesis, and phosphatidylinositol signaling, and they were downregulated in the IAMSLs. Key candidate genes encoding chalcone--flavonone isomerase, pectinesterase, and UDP-glucose pyrophosphorylase were screened and identified. Moreover, further verification elucidated that due to the impact of downregulated genes in these pathways, the male sterile anthers were deficient in sugar and energy, with excessive accumulations of ROS, blocked sporopollenin synthesis, and abnormal tapetum degradation. Conclusions Through comparative transcriptome analysis, an intriguing core transcriptome-mediated male-sterility network was proposed and constructed for wheat and inferred that the downregulation of genes in important pathways may ultimately stunt the formation of the pollen outer wall in IAMSLs. These findings provide insights for predicting the functions of the candidate genes, and the comprehensive analysis of our results was helpful for studying the abortive interaction mechanism in CMS wheat.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Weifang Liao ◽  
Zhinan Mei ◽  
Lihong Miao ◽  
Pulin Liu ◽  
Ruijie Gao

Abstract Background Entada phaseoloides (L.) Merr. is an important traditional medicinal plant. The stem of Entada phaseoloides is popularly used as traditional medicine because of its significance in dispelling wind and dampness and remarkable anti-inflammatory activities. Triterpenoid saponins are the major bioactive compounds of Entada phaseoloides. However, genomic or transcriptomic technologies have not been used to study the triterpenoid saponin biosynthetic pathway in this plant. Results We performed comparative transcriptome analysis of the root, stem, and leaf tissues of Entada phaseoloides with three independent biological replicates and obtained a total of 53.26 Gb clean data and 116,910 unigenes, with an average N50 length of 1218 bp. Putative functions could be annotated to 42,191 unigenes (36.1%) based on BLASTx searches against the Non-redundant, Uniprot, KEGG, Pfam, GO, KEGG and COG databases. Most of the unigenes related to triterpenoid saponin backbone biosynthesis were specifically upregulated in the stem. A total of 26 cytochrome P450 and 17 uridine diphosphate glycosyltransferase candidate genes related to triterpenoid saponin biosynthesis were identified. The differential expressions of selected genes were further verified by qPT-PCR. Conclusions The dataset reported here will facilitate the research about the functional genomics of triterpenoid saponin biosynthesis and genetic engineering of Entada phaseoloides.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Seung-il Yoo ◽  
Hwa-Yong Lee ◽  
Kesavan Markkandan ◽  
Suyun Moon ◽  
Yong Ju Ahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document