scholarly journals Development and validation of a 14-gene signature for prognosis prediction in hepatocellular carcinoma

Genomics ◽  
2020 ◽  
Vol 112 (4) ◽  
pp. 2763-2771 ◽  
Author(s):  
Bo-Han Zhang ◽  
Jian Yang ◽  
Li Jiang ◽  
Tao Lyu ◽  
Ling-Xiang Kong ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Genhao Zhang ◽  
Lisa Su ◽  
Xianping Lv ◽  
Qiankun Yang

Abstract Background Hepatocellular carcinoma (HCC) has become a global health issue of wide concern due to its high prevalence and poor therapeutic efficacy. Both tumor doubling time (TDT) and immune status are closely related to the prognosis of HCC patients. However, the association between TDT-related genes (TDTRGs) and immune-related genes (IRGs) and the value of their combination in predicting the prognosis of HCC patients remains unclear. The current study aimed to discover reliable biomarkers for anticipating the future prognosis of HCC patients based on the relationship between TDTRGs and IRGs. Methods Tumor doubling time-related genes (TDTRGs) were acquired from GSE54236 by using Pearson correlation test and immune-related genes (IRGs) were available from ImmPort. Prognostic TDTRGs and IRGs in TCGA-LIHC dataset were determined to create a prognostic model by the LASSO-Cox regression and stepwise Cox regression analysis. International Cancer Genome Consortium (ICGC) and another cohort of individual clinical samples acted as external validations. Additionally, significant impacts of the signature on HCC immune microenvironment and reaction to immune checkpoint inhibitors were observed. Results Among the 68 overlapping genes identified as TDTRG and IRG, a total of 29 genes had significant prognostic relevance and were further selected by performing a LASSO-Cox regression model based on the minimum value of λ. Subsequently, a prognostic three-gene signature including HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1), C-type lectin domain family 1 member B (CLEC1B), and Collectin sub-family member 12 (COLEC12) was finally identified by stepwise Cox proportional modeling. The signature exhibited superior accuracy in forecasting the survival outcomes of HCC patients in TCGA, ICGC and the independent clinical cohorts. Patients in high-risk subgroup had significantly increased levels of immune checkpoint molecules including PD-L1, CD276, CTLA4, CXCR4, IL1A, PD-L2, TGFB1, OX40 and CD137, and are therefore more sensitive to immune checkpoint inhibitors (ICIs) treatment. Finally, we first found that overexpression of CLEC1B inhibited the proliferation and migration ability of HuH7 cells. Conclusions In summary, the prognostic signature based on TDTRGs and IRGs could effectively help clinicians classify HCC patients for prognosis prediction and individualized immunotherapies.


2020 ◽  
Vol 11 (20) ◽  
pp. 5918-5928
Author(s):  
Xin Wang ◽  
Cong Tan ◽  
Min Ye ◽  
Xu Wang ◽  
Weiwei Weng ◽  
...  

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16665-e16665
Author(s):  
Taicheng Zhou ◽  
Zhihua Cai ◽  
Ning Ma ◽  
Wenzhuan Xie ◽  
Chan Gao ◽  
...  

e16665 Background: Hepatocellular carcinoma (HCC) remains a major challenge for public health worldwide and long-term outcomes remained dismal despite availability of curative treatment. We aimed to construct a multi-gene model for prognosis prediction to inform clinical management of HCC. Methods: RNA-seq data of paired tumor and normal tissue samples of HCC patients from the TCGA and GEO database were used to identify differentially expressed genes (DEGs). DEGs shared by both cohorts along with patients’ survival data of the TCGA cohort were further analyzed using univariate Cox regression and LASSO Cox regression to build a prognostic 10-gene signature, followed by validation of the signature via ICGC cohort and identification of independent prognostic predictors. A nomogram for prognosis prediction was built and Gene Set Enrichment Analysis (GSEA) was performed to further understand the underlying molecular mechanisms. Results: Of 571 patients (70.93% men and 29.07% women; median age [IQR], 65 [56-72] years), a signature of 10 genes was constructed using the training cohort. In the testing and validation cohorts, the signature significantly stratified patients into low- vs high-risk groups in terms of overall survival across and within subpopulations with stage I/II and III/IV disease and remained as an independent prognostic factor in multivariate analyses (hazard ratio range, 0.13 [95% CI, 0.07-0.24; P < 0 .001] to 0.38 [95% CI, 0.2-0.71; P < 0.001]) after adjusting for clinicopathological factors. Prognosis was significantly worse in the high-risk group than in the low-risk group across cohorts (P < 0.001 for all). The 10-gene signature achieved a higher accuracy (C-index, 0.84; AUCs for 1-, 3- and 5-year OS, 0.84, 0.81 and 0.85, respectively) than 8 previously reported multigene signatures (C-index range, 0.67 to 0.73; AUCs range, 0.68 to 0.79, 0.68 to 0.80 and 0.67 to 0.78, respectively) for estimation of survival in comparable cohorts. A nomogram incorporating tumor stage and signature-based risk group showed better predictive performance for 1- and 3- year survival than for 5 year survival. Moreover, GSEA revealed that the pathways related to cell cycle regulation were more prominently enriched in the high-risk group while the low-risk group had higher enrichment of metabolic process. Conclusions: Taken together, we established a robust 10-gene signature and a nomogram to predict overall survival of HCC patients, which may help recognize high-risk patients potentially benefiting from more aggressive treatment.


Sign in / Sign up

Export Citation Format

Share Document