Corticosterone's roles in avian migration: Assessment of three hypotheses

2021 ◽  
Vol 135 ◽  
pp. 105033
Author(s):  
Carolyn M. Bauer ◽  
Heather E. Watts
Keyword(s):  
1998 ◽  
Vol 29 (4) ◽  
pp. 395 ◽  
Author(s):  
Alasdair I. Houston
Keyword(s):  

2008 ◽  
Vol 5 (1) ◽  
pp. 77-80 ◽  
Author(s):  
T Fuchs ◽  
D Maury ◽  
F.R Moore ◽  
V.P Bingman

Many species of typically diurnal songbirds experience sleep loss during the migratory seasons owing to their nocturnal migrations. However, despite substantial loss of sleep, nocturnally migrating songbirds continue to function normally with no observable effect on their behaviour. It is unclear if and how avian migrants compensate for sleep loss. Recent behavioural evidence suggests that some species may compensate for lost night-time sleep with short, uni- and bilateral ‘micro-naps’ during the day. We provide electrophysiological evidence that short episodes of sleep-like daytime behaviour (approx. 12 s) are accompanied by sleep-like changes in brain activity in an avian migrant. Furthermore, we present evidence that part of this physiological brain response manifests itself as unihemispheric sleep, a state during which one brain hemisphere is asleep while the other hemisphere remains essentially awake. Episodes of daytime sleep may represent a potent adaptation to the challenges of avian migration and offer a plausible explanation for the resilience to sleep loss in nocturnal migrants.


2011 ◽  
Vol 104 (2) ◽  
pp. 237-250 ◽  
Author(s):  
ROBERT M. ZINK
Keyword(s):  

2018 ◽  
Vol 14 (2) ◽  
pp. 20170741 ◽  
Author(s):  
Adam M. Fudickar ◽  
Ellen D. Ketterson

Ongoing changes to global weather patterns and human modifications of the environment have altered the breeding and non-breeding ranges of migratory species, the timing of their migrations, and even whether they continue to migrate at all. Animal movements are arguably one of the most difficult behaviours to study, particularly in smaller birds that migrate tens to thousands of kilometres seasonally, often moving hundreds of kilometres each day. The recent miniaturization of tracking and logging devices has led to a radical transformation in our understanding of avian migratory behaviour and migratory connectivity. While advances in technology have altered the way researchers study migratory behaviour in the field, advances in techniques related to the study of physiological and genetic mechanisms underlying migratory behaviour have rarely been integrated into field studies of tracking. To predict the capacity of migrants to adjust to a changing planet, it is essential that we combine avian migration data with physiological and genetic measurements taken at key time points prior to, during and after migration.


The Condor ◽  
2007 ◽  
Vol 109 (2) ◽  
pp. 256-267 ◽  
Author(s):  
Keith A. Hobson ◽  
Steve Van Wilgenburg ◽  
Leonard I. Wassenaar ◽  
Frank Moore ◽  
Jeffrey Farrington

AbstractMeasurement of stable-hydrogen isotopes (δD) in feathers of migrating birds can provide information on where feathers were grown in North America, at least to an approximate band of latitude. This approach has greatly increased our ability to investigate aspects of avian migration and stopover ecology, since origins of unmarked individuals at migration stopover sites can be estimated for the first time. However, few studies have explored the power of combining isotope measurements with geographic information system (GIS) methods. We measured δD values in feathers of hatching-year (HY) Swainson's Thrushes (Catharus ustulatus; n  =  60), Wood Thrushes (Hylocichla mustelina; n  =  113), and Gray Catbirds (Dumetella carolinensis; n  =  158) at Ft. Morgan Peninsula, Alabama (30°10′N, 88°00′W), a migration stopover site along the Gulf coast. By applying an elevation-corrected hydrogen isotope basemap for birds in North America, we derived a GIS surface depicting expected feather δD values across the continent. We then used GIS to constrain the possible origins of the sampled populations by considering only values falling within the North American breeding ranges of the species. We depicted likely origins of migrating birds by the 50% and 75% tolerance limits of the data. Our GIS analysis indicated that our captured populations represented much-reduced regions of possible origin based on the North American breeding distributions. Gradients in abundance data from the North American Breeding Bird Survey (BBS) allowed us to further narrow possible origins within isotopic boundaries for Wood Thrushes and Gray Catbirds. This exercise provided a means by which priority regions and habitats could be assessed at large continental scales based on actual productivity. We suggest the combination of isotopic and GIS tools provides a powerful means to derive conservation priorities and to investigate key factors involved in the ecology of avian migration and stopover.


2020 ◽  
Vol 60 (4) ◽  
pp. 967-975 ◽  
Author(s):  
Verner P Bingman ◽  
Emily M Ewry

Synopsis The migratory behavioral profile of birds is characterized by considerable variation in migratory phenotype, and a number of distinct orientation and navigational mechanisms supports avian migration and homing. As such, bird navigation potentially offers a unique opportunity to investigate the neurogenomics of an often spectacular, naturally occurring spatial cognition. However, a number of factors may impede realization of this potential. First, aspects of the migratory behavior displayed by birds, including some navigational-support mechanisms, are under innate/genetic influence as, for example, young birds on their first migration display appropriate migratory orientation and timing without any prior experience and even when held in captivity from the time of birth. Second, many of the genes with an allelic variation that co-varies with migratory phenotype are genes that regulate processes unrelated to cognition. Where cognition and navigation clearly converge is in the familiar landmark/landscape navigation best studied in homing pigeons and known to be dependent on the hippocampus. Encouraging here are differences in the hippocampal organization among different breeds of domestic pigeons and a different allelic profile in the LRP8 gene of homing pigeons. A focus on the hippocampus also suggests that differences in developmentally active genes that promote hippocampal differentiation might also be genes where allelic or epigenetic variation could explain the control of or comparison-group differences in a cognition of navigation. Sobering, however, is just how little has been learned about the neurogenomics of cognition (“intelligence”) in humans despite the vast resources and research activity invested; resources that would be unimaginable for any avian study investigating bird navigation.


Sign in / Sign up

Export Citation Format

Share Document