migratory phenotype
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 27)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Adam M. Swartz ◽  
Kelly M. Hotchkiss ◽  
Smita K. Nair ◽  
John H. Sampson ◽  
Kristen A. Batich
Keyword(s):  

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M Dorenkamp ◽  
M Nasiry ◽  
S Koch ◽  
H Reinecke ◽  
R Godfrey

Abstract Purpose Aberrant activation of Type 2 Diabetes mellitus (T2DM) monocytes is an important pathomechanism leading to restricted arteriogenesis and augmented atherosclerosis, hereby, accelerating CAD and PAD. Tyrosine phosphatase SHP-2 was found to be upregulated in T2DM-monocytes. This study aimed to identify the pathways regulating SHP-2 expression in T2DM-monocytes. Methods Primary human monocytes were isolated from the peripheral blood of T2DM patients and healthy individuals. Monocytes were incubated with Methylglyoxal (MG), a highly reactive side product of glycolysis, Receptor for advanced glycation end product (RAGE) ligand AGE-bovine serum (AGE-BSA) or TNFα for 24 hours. Transwell migration assays were used to analyse the migratory potential of monocytes. Western Blot, RT-qPCR and FACS were performed to quantify the expression of relevant molecules. Pharmacological inhibitors were used to study functional relevance of the RAGE-NFκB-SHP-2 signalling axis. Results Significantly enhanced SHP-2 expression was detected in monocytes, which were incubated with TNFα, MG or AGE-BSA, respectively. Co-incubation of these molecules with NFκB-inhibitor blocked SHP-2 upregulation. Pharmacological inhibition of RAGE reversed the MG or AGE-BSA induced SHP-2 expression and activity in monocytes. RAGE expression on monocytes was upregulated after the incubation with MG or AGE-BSA, consistent with enhanced RAGE mRNA levels in T2DM monocytes. Besides, we also detected elevated SHP-2 transcripts in monocytes of T2DM patients which was more pronounced in monocytes with augmented TNFα expression. Furthermore, MG and AGE-BSA provoked the enhanced migration of monocytes which could be significantly reduced after the application of an allosteric SHP-2 inhibitor. Interestingly, pharmacological inhibition of RAGE in these conditions alone was sufficient to block the elevated monocyte migration. Moreover, monocytes isolated from T2DM patients revealed a comparable pro-migratory phenotype, which was completely restored after the pharmacological inhibition of SHP-2. Conclusions This study identified the upstream signalling mediators that contribute to SHP-2 dependent monocyte activation in T2DM conditions. Glucose metabolite (MG) or RAGE ligand (AGE-BSA) alone were sufficient to induce a pro-migratory phenotype in monocytes by upregulating SHP-2. Of note, an inflammatory state seems to accelerate this effect since enhanced TNFα levels were found to be positively correlated with the augmented SHP-2 expression. Moreover, we identified the RAGE-NFκB signalling axis through which the SHP-2 upregulation is conveyed when augmented accumulation of glucose metabolites occur. These findings reveal a basis for potential new therapeutic approaches to prevent accelerated CAD and PAD in diabetic patients since independent pharmacological inhibition of every step in the RAGE-NFκB-SHP-2 axis was sufficient to reset the aberrant monocyte activation. FUNDunding Acknowledgement Type of funding sources: Other. Main funding source(s): Interdisciplinary Center for Clinical Research of the Medical Faculty of the University of Münster


Author(s):  
Margarite D. Matossian ◽  
Steven Elliott ◽  
T. Van Hoang ◽  
Hope E. Burks ◽  
Maryl K. Wright ◽  
...  

PROTEOMICS ◽  
2021 ◽  
pp. 2000098
Author(s):  
Annalisa L.E. Carli ◽  
Shoukat Afshar‐Sterle ◽  
Alin Rai ◽  
Haoyun Fang ◽  
Ryan O'Keefe ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Chaitra Rao ◽  
Danielle E Frodyma ◽  
Siddesh Southekal ◽  
Robert A Svoboda ◽  
Adrian R Black ◽  
...  

The epithelial-to-mesenchymal transition (EMT) is considered a transcriptional process that induces a switch in cells from a polarized state to a migratory phenotype. Here we show that KSR1 and ERK promote EMT-like phenotype through the preferential translation of Epithelial-Stromal Interaction 1 (EPSTI1), which is required to induce the switch from E- to N-cadherin and coordinate migratory and invasive behavior. EPSTI1 is overexpressed in human colorectal cancer (CRC) cells. Disruption of KSR1 or EPSTI1 significantly impairs cell migration and invasion in vitro, and reverses EMT-like phenotype, in part, by decreasing the expression of N-cadherin and the transcriptional repressors of E-cadherin expression, ZEB1 and Slug. In CRC cells lacking KSR1, ectopic EPSTI1 expression restored the E- to N-cadherin switch, migration, invasion, and anchorage-independent growth. KSR1-dependent induction of EMT-like phenotype via selective translation of mRNAs reveals its underappreciated role in remodeling the translational landscape of CRC cells to promote their migratory and invasive behavior.


2021 ◽  
Author(s):  
Scott Lovell ◽  
Leran Zhang ◽  
Thomas Kryza ◽  
Anna Neodo ◽  
Nathalie Bock ◽  
...  

AbstractKallikrein-related peptidases (KLKs) are a family of secreted serine proteases, which form a network – the KLK activome – with an important role in proteolysis and signaling. In prostate cancer (PCa), increased KLK activity promotes tumor growth and metastasis through multiple biochemical pathways, and specific quantification and tracking of changes in the KLK activome could contribute to validation of KLKs as potential drug targets. Herein we report a technology platform based on novel activity-based probes (ABPs) and inhibitors with unprecedented potency and selectivity enabling simultaneous orthogonal analysis of KLK2, KLK3 and KLK14 activity in hormone-responsive PCa cell lines and tumor homogenates. Using selective inhibitors and multiplexed fluorescent activity-based protein profiling (ABPP) we dissect the KLK activome in PCa cells and show that increased KLK14 activity leads to a migratory phenotype. Furthermore, using biotinylated ABPs we show that active KLK molecules are secreted into the bone microenvironment by PCa cells following stimulation by osteoblasts suggesting KLK-mediated signaling mechanisms could contribute to PCa metastasis to bone. Together our findings show that ABPP is a powerful approach to dissect dysregulation of the KLK activome as a promising and previously underappreciated therapeutic target in advanced PCa.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 151
Author(s):  
Roberto Carlos Frias-Soler ◽  
Lilian Villarín Pildaín ◽  
Michael Wink ◽  
Franz Bairlein

This work presents an updated and more complete version of the transcriptome of a long-distance migrant, the Northern Wheatear (Oenanthe oenanthe). The improved transcriptome was produced from the independent mRNA sequencing of adipose tissue, brain, intestines, liver, skin, and muscle tissues sampled during the autumnal migratory season. This new transcriptome has better sequencing coverage and is more representative of the species’ migratory phenotype. We assembled 20,248 transcripts grouped into 16,430 genes, from which 78% were successfully annotated. All the standard assembly quality parameters were improved in the second transcriptome version.


2021 ◽  
pp. jeb.233486
Author(s):  
Valeria Marasco ◽  
Manrico Sebastiano ◽  
David Costantini ◽  
Gianni Pola ◽  
Leonida Fusani

High caloric intake can increase production of reactive oxygen and nitrogen species. We examined whether the emergence of the migratory phenotype, primarily signaled by increased food intake and fuelling, is accompanied by changes in oxidative status. We induced autumn migration followed by a non-migratory wintering phase in Common quails (Coturnix coturnix). We compared three markers of oxidative status: oxidative damage to lipids expressed as Thiobarbituric Acid Reactive Substances (TBARS); superoxide dismutase (SOD); and glutathione peroxidase (GPx) between birds sampled during the migratory- and non-migratory phase. We found that the emergence of the migratory phenotype was associated with: (i) higher levels of TBARS in the liver; (ii) lower SOD in red blood cells; (iii) higher GPx in the pectoral muscle, and (iv) sex-specific changes in red blood cells and liver. We found no link between food intake and variation in markers of oxidative status in any of the tissue examined, despite food intake being higher in the migratory birds. However, the increase in body mass was positively correlated with muscle GPx activity as birds entered the pre-migratory fattening phase, while the amount of decrease in body mass was negatively correlated with muscle GPx as birds transitioned to the non-migratory phase. Such correlations were absent in red blood cells and liver. Our work suggests that during the emergence of the migratory phenotype birds might strategically displace oxidative costs on the liver in order to safeguard the pectoral muscles, which have a fundamental role to successfully complete the migratory flight.


2021 ◽  
Author(s):  
Chaitra Rao ◽  
Danielle E. Frodyma ◽  
Siddesh Southekal ◽  
Robert A. Svoboda ◽  
Adrian R. Black ◽  
...  

AbstractThe epithelial-to-mesenchymal transition (EMT) is considered a transcriptional process that induces a switch in cells from a polarized state to a migratory phenotype. Here we show that KSR1 and ERK promote EMT through the preferential translation of Epithelial-Stromal Interaction 1 (EPSTI1), which is required to induce the switch from E-to N-cadherin and coordinate migratory and invasive behavior. EPSTI1 is overexpressed in human colorectal cancer (CRC) cells. Disruption of KSR1 or EPSTI1 significantly impairs cell migration and invasion in vitro, and reverses EMT, in part, by decreasing the expression of N-cadherin and the transcriptional repressors of E-cadherin expression, ZEB1 and Slug. In CRC cells lacking KSR1, ectopic EPSTI1 expression restored the E-to N-cadherin switch, migration, invasion, and anchorage-independent growth. KSR1-dependent induction of EMT via selective translation of mRNAs reveals its underappreciated role in remodeling the translational landscape of CRC cells to promote their migratory and invasive behavior.


Sign in / Sign up

Export Citation Format

Share Document