Protein acetylation in cardiac aging

Author(s):  
Ashley Francois ◽  
Alessandro Canella ◽  
Lynn Marcho ◽  
Matthew S. Stratton
Author(s):  
Yuexia Liu ◽  
Hong Yang ◽  
Xuanchen Liu ◽  
Huihui Gu ◽  
Yizhou Li ◽  
...  
Keyword(s):  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y Kureishi Bando ◽  
Y.R Remina ◽  
T.K Kamihara ◽  
K.N Nishimura ◽  
T.M Murohara

Abstract Background Glucose-dependent insulinotropic peptide (GIP) is incretin hormone that is emerged as an important regulator of lipid metabolism. Fat intake induces hypersecretion of GIP that is involved in obesity and ectopic fat accumulation. Aging is another stimulant of GIP hypersecretion, which is suggested as a cause of “sarcopenic obesity in elderly”. In heart, aging is the known risk factor of HFpEF, of which typical characteristics is pathological cardiac hypertrophy induced by unknown cause(s). It remained uncertain whether any ectopic fat accumulation, such as cardiac steatosis may cause the aging-induced cardiac hypertrophy. Ceramide is one of the lipid metabolites that involves in apoptosis, inflammation, and stress responses, which are among the pathogenic components of heart failure. However, it remained unclear whether the ceramide may play any pathophysiological role in cardiac aging. Purpose We thus hypothesized whether cardiac aging may alter cardiac lipid metabolism and the GIP may play a regulatory role in the cardiac aging via modulating cardiac steatosis, particularly ceramide. Methods Mouse model of GIPR deficiency (GIPR-KO) was employed and cardiac evaluation of GIPR-KO and the age-matched wild type mice were performed. Results Aging (50w/o) induced GIP hypersecretion in control mice and their body and heart weight were 50% increased as compared to younger counterpart (10w/o). In contrast, the aging-induced increase rate in body and heart weight of GIPR-KO was significantly lower (22%). Aging also increased the circulating ketone bodies with increase in FGF21 expression in heart and, notably, there was no pathological increase in cardiac ceremide and oxidative stress with normal left-ventricular (LV) function (LVEF=82.2±1.8). In contrast, GIPR-KO exhibited pathological increase in cardiac ceramide without the elevation of the circulating ketone bodies. The younger GIPR-KO (10 w/o) exhibited normal left-ventricular (LV) function, however, the older mice (50 w/o) exhibited systolic LV dysfunction (LVEF=55.8±8.5) with increase in cardiac apoptosis and oxidative stress. Cardiac ceramide accumulation was increased in the aged normal mice, which was significantly higher in the aged GIPR-KO. Furthermore, GIPR-KO exhibited increase in cardiac fibrosis and oxidative stress, which were absent in the aged normal counterpart. Conclusion Aging increased circulating GIP level the leads to compensatory rise in the circulating ketone bodies without pathological increase in cardiac ceremide and related oxidative stress in heart. Loss of GIP signaling caused pathological increase in cardiac ceramide, leading to the aging-induced progression of systolic left-ventricular dysfunction. Collectively, we conclude that the aging-induced GIP hyperexcretion is essential for the aging-induced healthy cardiac remodeling by augmenting compensatory ketone body elevation. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): KAKEN-HI


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 216
Author(s):  
Mio Harachi ◽  
Kenta Masui ◽  
Webster K. Cavenee ◽  
Paul S. Mischel ◽  
Noriyuki Shibata

Metabolic reprogramming is an emerging hallmark of cancer and is driven by abnormalities of oncogenes and tumor suppressors. Accelerated metabolism causes cancer cell aggression through the dysregulation of rate-limiting metabolic enzymes as well as by facilitating the production of intermediary metabolites. However, the mechanisms by which a shift in the metabolic landscape reshapes the intracellular signaling to promote the survival of cancer cells remain to be clarified. Recent high-resolution mass spectrometry-based proteomic analyses have spotlighted that, unexpectedly, lysine residues of numerous cytosolic as well as nuclear proteins are acetylated and that this modification modulates protein activity, sublocalization and stability, with profound impact on cellular function. More importantly, cancer cells exploit acetylation as a post-translational protein for microenvironmental adaptation, nominating it as a means for dynamic modulation of the phenotypes of cancer cells at the interface between genetics and environments. The objectives of this review were to describe the functional implications of protein lysine acetylation in cancer biology by examining recent evidence that implicates oncogenic signaling as a strong driver of protein acetylation, which might be exploitable for novel therapeutic strategies against cancer.


2015 ◽  
Vol 1847 (11) ◽  
pp. 1424-1433 ◽  
Author(s):  
Autumn Tocchi ◽  
Ellen K. Quarles ◽  
Nathan Basisty ◽  
Lemuel Gitari ◽  
Peter S. Rabinovitch

2010 ◽  
Vol 106 (2) ◽  
pp. 272-284 ◽  
Author(s):  
Erik W. Bush ◽  
Timothy A. McKinsey
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document