Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level

Methods ◽  
2013 ◽  
Vol 59 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Karin Norrman ◽  
Anna Strömbeck ◽  
Henrik Semb ◽  
Anders Ståhlberg
2016 ◽  
Author(s):  
Stefan Semrau ◽  
Johanna Goldmann ◽  
Magali Soumillon ◽  
Tarjei S. Mikkelsen ◽  
Rudolf Jaenisch ◽  
...  

ABSTRACTGene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measured the gene expression dynamics of retinoic acid driven mESC differentiation using an unbiased single-cell transcriptomics approach. We found that the exit from pluripotency marks the start of a lineage bifurcation as well as a transient phase of susceptibility to lineage specifying signals. Our study revealed several transcriptional signatures of this phase, including a sharp increase of gene expression variability. Importantly, we observed a handover between two classes of transcription factors. The early-expressed class has potential roles in lineage biasing, the late-expressed class in lineage commitment. In summary, we provide a comprehensive analysis of lineage commitment at the single cell level, a potential stepping stone to improved lineage control through timing of differentiation cues.


2008 ◽  
Vol 2008 (Spring) ◽  
Author(s):  
Gabriela Galiová ◽  
Eva Bártová ◽  
Andrea Harničarová ◽  
Jana Krejčí ◽  
Stanislav Kozubek

2016 ◽  
Vol 01 (03) ◽  
pp. 201-208 ◽  
Author(s):  
Malini Krishnamoorthy ◽  
Brian Gerwe ◽  
Jamie Heimburg-Molinaro ◽  
Rachel Nash ◽  
Jagan Arumugham ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5988
Author(s):  
Hyun Kyu Kim ◽  
Tae Won Ha ◽  
Man Ryul Lee

Cells are the basic units of all organisms and are involved in all vital activities, such as proliferation, differentiation, senescence, and apoptosis. A human body consists of more than 30 trillion cells generated through repeated division and differentiation from a single-cell fertilized egg in a highly organized programmatic fashion. Since the recent formation of the Human Cell Atlas consortium, establishing the Human Cell Atlas at the single-cell level has been an ongoing activity with the goal of understanding the mechanisms underlying diseases and vital cellular activities at the level of the single cell. In particular, transcriptome analysis of embryonic stem cells at the single-cell level is of great importance, as these cells are responsible for determining cell fate. Here, we review single-cell analysis techniques that have been actively used in recent years, introduce the single-cell analysis studies currently in progress in pluripotent stem cells and reprogramming, and forecast future studies.


Stem Cells ◽  
2007 ◽  
Vol 25 (6) ◽  
pp. 1490-1497 ◽  
Author(s):  
Ludovic Vallier ◽  
Morgan Alexander ◽  
Roger Pedersen

Sign in / Sign up

Export Citation Format

Share Document