Reticulate evolution in conidae: evidence of nuclear and mitochondrial introgression

Author(s):  
Andrew W. Wood ◽  
Thomas F. Duda
2018 ◽  
Author(s):  
Roberta Bisconti ◽  
Daniele Porretta ◽  
Paola Arduino ◽  
Giuseppe Nascetti ◽  
Daniele Canestrelli

ABSTRACTDiscordance between mitochondrial and nuclear patterns of population genetic structure is providing key insights into the eco-evolutionary dynamics between and within species, and their assessment is highly relevant to biodiversity monitoring practices based on DNA barcoding approaches. Here, we investigate the population genetic structure of the fire salamander Salamandra salamandra in peninsular Italy. Both mitochondrial and nuclear markers clearly identified two main population groups. However, nuclear and mitochondrial zones of geographic transition between groups were located 600 km from one another. The overall pattern of genetic variation, together with morphological and fossil data, suggest that a rampant mitochondrial introgression triggered the observed mitonuclear discordance, following a post-glacial secondary contact between lineages. Moreover, at a shallower level of population structure, we observed evidence of asymmetric introgression of nuclear genes between two sub-groups in southern Italy. Our results clearly show the major role played by reticulate evolution in shaping the structure of Salamandra salamandra populations and, together with similar findings in other regions of the species’ range, contribute to identify the fire salamander as a particularly intriguing case to investigate the complexity of mechanisms triggering patterns of mitonuclear discordance in animals.


Author(s):  
Charles Clarke ◽  
Jan Schlauer ◽  
Jonathan Moran ◽  
Alastair Robinson

Nepenthes is a genus of 130-160 species, almost half of which were described after 2001. The recent, rapid increase in species descriptions has been driven by application of a less rigorous species concept by botanists, taxonomic inflation, and discoveries of new taxa during explorations of remote parts of Southeast Asia. Many recently published species descriptions of Nepenthes are based entirely upon qualitative morphological information and are not supported by adequate research. Accordingly, the status of many Nepenthes taxa is contested. Evolution within the genus is not well understood, because nuclear and maternally inherited plastid genomes cannot resolve relationships between many species, particularly those that evolved recently through introgression or reticulate evolution. Improvement in our understanding of the systematics and evolution of Nepenthes requires the adoption of ‘best practice’ collection and preservation methods, and the application of quantitative analytical methods for morphological, genetic, and ecological information.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Xuebo Zhao ◽  
Xiangdong Fu ◽  
Changbin Yin ◽  
Fei Lu
Keyword(s):  

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 489
Author(s):  
Bartosz Łabiszak ◽  
Witold Wachowiak

Speciation mechanisms, including the role of interspecific gene flow and introgression in the emergence of new species, are the major focus of evolutionary studies. Inference of taxonomic relationship between closely related species may be challenged by past hybridization events, but at the same time, it may provide new knowledge about mechanisms responsible for the maintenance of species integrity despite interspecific gene flow. Here, using nucleotide sequence variation and utilizing a coalescent modeling framework, we tested the role of hybridization and introgression in the evolutionary history of closely related pine taxa from the Pinus mugo complex and P. sylvestris. We compared the patterns of polymorphism and divergence between taxa and found a great overlap of neutral variation within the P. mugo complex. Our phylogeny reconstruction indicated multiple instances of reticulation events in the past, suggesting an important role of interspecific gene flow in the species divergence. The best-fitting model revealed P. mugo and P. uncinata as sister species with basal P. uliginosa and asymmetric migration between all investigated species after their divergence. The magnitude of interspecies gene flow differed greatly, and it was consistently stronger from representatives of P. mugo complex to P. sylvestris than in the opposite direction. The results indicate the prominent role of reticulation evolution in those forest trees and provide a genetic framework to study species integrity maintained by selection and local adaptation.


PLoS Genetics ◽  
2019 ◽  
Vol 15 (2) ◽  
pp. e1007986 ◽  
Author(s):  
Eduard Ocaña-Pallarès ◽  
Sebastián R. Najle ◽  
Claudio Scazzocchio ◽  
Iñaki Ruiz-Trillo

Taxon ◽  
2005 ◽  
Vol 54 (3) ◽  
pp. 593-604 ◽  
Author(s):  
Bastiaantje Vriesendorp ◽  
Freek T. Bakker
Keyword(s):  

2015 ◽  
Vol 93 ◽  
pp. 63-76 ◽  
Author(s):  
Jin-Hua Ran ◽  
Ting-Ting Shen ◽  
Wen-Juan Liu ◽  
Pei-Pei Wang ◽  
Xiao-Quan Wang

2011 ◽  
Vol 108 (5) ◽  
pp. 867-876 ◽  
Author(s):  
H. W. Bennert ◽  
K. Horn ◽  
M. Kauth ◽  
J. Fuchs ◽  
I. S. Bisgaard Jakobsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document