Sensitivity of fundamental mode shape and static deflection for damage identification in cantilever beams

2011 ◽  
Vol 25 (2) ◽  
pp. 630-643 ◽  
Author(s):  
Maosen Cao ◽  
Lin Ye ◽  
Limin Zhou ◽  
Zhongqing Su ◽  
Runbo Bai
2010 ◽  
Vol 77 (3) ◽  
Author(s):  
Demetris Pentaras ◽  
Isaac Elishakoff

Problem of matching a desired fundamental natural frequency is solved in the closed form for the polar-orthotropic inhomogeneous circular plate, which is clamped along its circumference. The vibration tailoring is performed by posing a semi-inverse eigenvalue problem. To do this, the fundamental mode shape is postulated. Namely, the analytical expression due to Lekhnitskii, and pertaining to the static deflection of the homogeneous circular plate is demanded to serve as an exact mode shape of the inhomogeneous plate. The analytical and numerical results are reported for several ratios of orthotropic coefficient.


Author(s):  
Guobiao Hu ◽  
Lihua Tang ◽  
Yaowen Yang

Abstract This paper proposes a lumped parameter approach to simplify the modelling of a metamaterial based PEH to predict its energy harvesting performance around the fundamental resonance. The metamaterial based PEH consists of a host beam with a piezoelectric patch bonded at the clamped end. A series of local resonators are attached onto the host beam. In the first case study, the local resonators are modelled as mass-spring systems. By applying Rayleigh’s method and approximating the fundamental mode shape by the static deflection, the host beam is represented by a SDOF system. The equivalent lumped parameters are assumed to concentrate at the tip of the host beam and their explicit expressions are presented. Though the local resonators are identical, they have different influences on the host beam when being attached at different positions. To reflect the interaction degree (i.e., reacting force) between the local resonator and the host beam, a scaling factor that is a function of the attaching position is derived. On the other hand, due to the action of the local resonators, the fundamental mode shape of the host beam is actually changed. Based on the linear superposition principle, the static deflection approximated fundamental mode shape is corrected and the electromechanical coupling coefficient that is sensitive to the slope of the mode shape is updated to improve the accuracy. Based on the derived equivalent lumped parameters and correction factors, a multiple-degree-of-freedom (MDOF) model is constructed to predict the dynamic behavior of the metamaterial based PEH with mass-spring resonators. A corresponding finite element model is built to verify the developed MDOF model. In the second case study, the local resonators are modelled as practical parasitic beams. The parasitic beams are converted into equivalent lumped systems as well. However, the lumped parameters are the effective parameters at the beam tip. For the force interaction at the root of a parasitic beam, a factor is derived to correct the reaction force when a parasitic beam is represented by a SDOF mass-spring system. Using the reaction force correction factor, a MDOF model for the metamaterial based PEH with beam-like resonators is also established and verified by the finite element model.


Author(s):  
Bo Xin ◽  
Zhaolong Zhang ◽  
Jie Zhang ◽  
Yiming Rong

The development of additive manufacturing technology makes it possible to realize a designed distribution of material properties in complex geometry. The distribution can be made not only in layers, but also in the axial direction of a beam. Axially functional graded (AFG) beams may play an important role in light-weight design for airfoil structure in aerospace industry. In this research, the free vibration of AFG cantilever beams is studied by using Euler-Bernoulli beam theory. It is taken into consideration that material properties, including elasticity modulus and mass density vary continuously along the axial direction of AFG beam according to an elliptic load distribution based on the life curve of airfoil. The governing differential equations of motion has been analyzed and solved to calculate the natural frequency and fundamental mode shape accurately. In order to verify the accuracy of the present formulation and results, the natural frequencies and fundamental mode shape of several AFG beams are obtained, and compared with the dynamic simulation results from ABAQUS. Good agreement is observed. The results indicate that the proposed method is effective at forecasting the dynamic property of AFG cantilever beams for airfoil structure.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chong Yang ◽  
Yu Fu ◽  
Jianmin Yuan ◽  
Min Guo ◽  
Keyu Yan ◽  
...  

The vibration-based damage identification method extracts the damage location and severity information from the change of modal properties, such as natural frequency and mode shape. Its performance and accuracy depends on the measurement precision. Laser Doppler vibrometer (LDV) provides a noncontact vibration measurement of high quality, but usually it can only do sampling on a single point. Scanning LDV is normally used to obtain the mode shape with a longer scanning time. In this paper, a damage detection technique is proposed using a self-synchronizing multipoint LDV. Multiple laser beams with various frequency shifts are projected on different points of the object, reflected and interfered with a common reference beam. The interference signal containing synchronized temporal vibration information of multiple spatial points is captured by a single photodetector and can be retrieved in a very short period. Experiments are conducted to measure the natural frequencies and mode shapes of pre- and postcrack cantilever beams. Mode shape curvature is calculated by numerical interpolation and windowed Fourier analysis. The results show that the artificial crack can be identified precisely from the change of natural frequencies and the difference of mode shape curvature squares.


2022 ◽  
Vol 36 (06) ◽  
Author(s):  
TAN-LOC NGUYEN

The fabrication process for the designed MEMS resonator using surface-micromachined technology is presented in this paper. A 10-MHz Free-Free beam MEMS resonator is designed to vibrate in the second-mode shape, which is significant improvement compare to the fundamental mode. The design showed a Q value as high as 75,000, which is significant improvement compared to 8,400 VHF F-F beam MEMS resonator by K. Wang; and very low motional resistance (18kΩ). The surface-micromachined technology is used as the standard process for the design. The process is briefly described from the layout design to the experimental fabricated device.


Sign in / Sign up

Export Citation Format

Share Document