Acoustic emission energy b -value for local damage evaluation in reinforced concrete structures subjected to seismic loadings

2018 ◽  
Vol 102 ◽  
pp. 262-277 ◽  
Author(s):  
Francisco Sagasta ◽  
Miguel E. Zitto ◽  
Rosa Piotrkowski ◽  
Amadeo Benavent-Climent ◽  
Elisabet Suarez ◽  
...  
Author(s):  
Yoshimi Ohta ◽  
Akemi Nishida ◽  
Haruji Tsubota ◽  
Yinsheng Li

Many empirical formulae have been proposed to evaluate the local damage to reinforced concrete structures caused by the impact of rigid projectiles. Most of these formulae have been derived based on impact tests perpendicular to the target structures. To date, few impact tests oblique to the target structures have been conducted. The purpose of this study is to propose a new formula for evaluating the local damage caused by oblique impacts based on experiments and simulations. The new formula is derived by modifying an empirical formulation for normal impact and the agreement with results of past oblique impact tests is discussed.


2016 ◽  
Vol 20 (9) ◽  
pp. 1390-1405 ◽  
Author(s):  
Ahmed A Abouhussien ◽  
Assem AA Hassan

This article presents the results of an experimental investigation on the application of acoustic emission technique for monitoring the steel-to-concrete bond integrity of reinforced concrete structures. A series of direct pull-out tests were performed on 54 reinforced concrete unconfined prism samples with variable rebar diameter (10, 20, and 35 mm), embedded length (50, 100, and 200 mm), and concrete cover (20, 30, and 40 mm). The samples were tested under incrementally increasing monotonic loading while being continuously monitored via attached acoustic emission sensors. These sensors were utilized to acquire different acoustic emission signal parameters emitted throughout the tests until failure. Also, an acoustic emission intensity analysis was implemented on acoustic emission signal strength data to quantify the damage resulting from loss of bond in all tested specimens. This analysis employed the signal strength of all recorded acoustic emission hits to develop two additional parameters: historic index ( H ( t)) and severity ( Sr). The results of bond behavior, mode of failure, and free end slip were compared with the recorded acoustic emission data. The results showed that the cumulative number of hits, cumulative signal strength, H ( t), and Sr had a good correlation with different stages of bond damage from de-bonding/micro-cracking until bond splitting failure and bar slippage, which caused cover cracking or delamination. The analysis of cumulative signal strength and H ( t) curves enabled early identification of two progressive stages of bond degradation (micro-cracking and macro-cracking) and recognized the various modes of failure of the tested specimens. The variations of bar diameter, concrete cover, and embedded length yielded significant impacts on both the bond behavior and acoustic emission activities. The results also presented developed intensity classification charts, based on H ( t) and Sr, to assess the bond integrity and to quantify the bond deterioration (micro-cracking, macro-cracking, and rebar slip) in reinforced concrete structures.


2007 ◽  
Vol 148 (1) ◽  
pp. 29-45 ◽  
Author(s):  
Tatyana Katsaga ◽  
Edward G. Sherwood ◽  
Michael P. Collins ◽  
R. Paul Young

Sign in / Sign up

Export Citation Format

Share Document