Local damage to reinforced concrete structures caused by impact of aircraft engine missiles Part 2. Evaluation of test results

1993 ◽  
Vol 140 (3) ◽  
pp. 407-423 ◽  
Author(s):  
T. Sugano ◽  
H. Tsubota ◽  
Y. Kasai ◽  
N. Koshika ◽  
C. Itoh ◽  
...  
Author(s):  
Yoshimi Ohta ◽  
Akemi Nishida ◽  
Haruji Tsubota ◽  
Yinsheng Li

Many empirical formulae have been proposed to evaluate the local damage to reinforced concrete structures caused by the impact of rigid projectiles. Most of these formulae have been derived based on impact tests perpendicular to the target structures. To date, few impact tests oblique to the target structures have been conducted. The purpose of this study is to propose a new formula for evaluating the local damage caused by oblique impacts based on experiments and simulations. The new formula is derived by modifying an empirical formulation for normal impact and the agreement with results of past oblique impact tests is discussed.


2011 ◽  
Vol 250-253 ◽  
pp. 1385-1394
Author(s):  
Guo Hua Song ◽  
Dong Wei Wang ◽  
Bing Kang Liu

The paper attempts to research the seismic behavior and mechanical mechanisms under repeated low-cycle loading of vertical connections in prefabricated reinforced concrete structures. Eighteen specimens were designed and tested, the test process and the mechanical mechanisms are studied, the seismic behavior of connections is analyzed, and the shear resistance formulas are proposed. The theoretical values based on proposed formulas are good agreement with test results. Under repeated loading, the shear resistance decreases, the connection ductility increases with connecting bar, but decreases with connection width. However, all the connections fail crisply with poor ductility. At sudden-cracking, the shear resistance increases with connecting bar, but changes nonlinearly with connection width. The resistance is composed of attributions of mechanism of diagonal-compressive column (MDCC) and mechanism of compressive friction action (MCFA). After sudden-cracking, the shear resistance is provided by weakened MDCC and dowel action of connecting bars (DACB). It increases with connecting bar and connection width.


2020 ◽  
Vol 10 (10) ◽  
pp. 3570
Author(s):  
Romualdas Kliukas ◽  
Ona Lukoševičienė ◽  
Arūnas Jaras ◽  
Bronius Jonaitis

This article explores the influence of transverse reinforcement (spiral) and high-strength longitudinal reinforcements on the physical-mechanical properties of centrifuged annular cross-section elements of concrete. The test results of almost 200 reinforced, and over 100 control elements are summarizing in this article. The longitudinal reinforcement ratio of samples produced in the laboratory and factory varied from 1.0% to 6.0%; the transverse reinforcement ratio varied from 0.25% to 1.25%; the pitch of spirals varied from 100 mm to 40 mm and the concrete strength varied from 25 MPa to 60 MPa. Experimental relationships of coefficients for concrete strength, moduli of elasticity and limits of the longitudinal strain of centrifuged concrete in reinforced concrete structures in short-term concentrically compression were proposed.


2006 ◽  
Vol 321-323 ◽  
pp. 377-380 ◽  
Author(s):  
Hong C. Rhim ◽  
Bo Hwan Oh ◽  
Hyo Seon Park

An attempt has been made to measure existing steel stress using magnetoelasticity. A device has been developed and used for the measurement of magnetism in response to the deformation of a steel bar. The proposed technique can be used for the assessment of existing reinforced concrete structures by the measurements of steel stress embedded inside concrete. A traditional technique requires to break the existing steel bar to measure existing strain. However, the proposed technique is developed to measure the stress without damaging the steel bar. A successful application of magnetoelasticity depends on the establishment of relationship between elastic and magnetic response due to loading. To investigate the correlation between the two, steel bars are loaded in tension under uniaxial loading while the magnetic reading is recorded. Based on the test results, equations are suggested to predict stress for steel bars with different diameters.


1996 ◽  
Vol 12 (4) ◽  
pp. 761-780 ◽  
Author(s):  
A. Ghobarah ◽  
Tarek S. Aziz ◽  
Ashraf Biddah

As building codes are updated, some of the existing important structures may fall short of complying with current standards even though they may have been properly designed and constructed according to earlier codes. Many existing structures may be inadequate and may pose severe risk during seismic events. Rehabilitation measures to upgrade the capacity of these structures can be performed at some point in their useful lives especially when located in seismically active zones. A new method for improving the seismic performance of existing reinforced concrete structures is by jacketing the deficient connections using corrugated steel jackets. An experimental program was conducted to evaluate this method of rehabilitation. Corrugated steel jacketing addresses the particular weakness that is often found in existing reinforced concrete structures, namely the lack of sufficient shear reinforcement and the required confining reinforcement within the joints and in adjoining beams and columns. The performance of four reinforced concrete connections was determined experimentally. The test specimens include one connection representing existing structures, one designed according to current seismic codes and two rehabilitated connections. The test results showed satisfactory performance at high cyclic load levels and significant increase in the shear capacity and ductility of connections rehabilitated with corrugated steel jackets.


2018 ◽  
Vol 196 ◽  
pp. 02021
Author(s):  
Anatoliy Prokopovich ◽  
Vladimir Repekto ◽  
Andrey Aleshin

The paper describes a new constructive solution of prefabricated cross-beams manufactured be using off-shuttering molding technologies. Prefabricated elements of such cross-beams are pre-stressed trough-shaped parts. Together with hollow slab panels, stacked on the upper surfaces of their vertical walls, they serve as permanent shuttering for installing required crosswise and longitudinal (for support moments) reinforcement and for further pouring of cast concrete. The study provides a methodology and gives tests results of three series of prototype samples and of one full-sized prefabricated cross-beam. The purpose of the tests is to study the actual work of prefabricated cross-beams of the proposed construction. To analyze the test results, the authors performed check calculations of prototype samples according to the existing Russian design regulations of reinforced concrete structures. The obtained data analysis leads to a conclusion that the proposed construction of prefabricated cross-beams is quite reliable and makes it possible to give recommendations on their calculation and design.


Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


Sign in / Sign up

Export Citation Format

Share Document