Optimization and improvement of stable processing condition by attaching additional masses for milling of thin-walled workpiece

2018 ◽  
Vol 103 ◽  
pp. 196-215 ◽  
Author(s):  
Min Wan ◽  
Xue-Bin Dang ◽  
Wei-Hong Zhang ◽  
Yun Yang
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3734
Author(s):  
Jianyu Yang ◽  
Xudong Li ◽  
Fei Li ◽  
Wenxiao Wang ◽  
Zhijie Li ◽  
...  

The finite element model (FE) of temperature field of straight thin-walled samples in laser cladding IN718 was established, and the growth of microstructure was simulated by cellular automata (CA) method through macro-micro coupling (CA-FE). The effects of different cooling conditions on microstructure, hardness, and properties of laser-cladding layer were studied by designing cooling device. The results show that the simulation results are in good agreement with the microstructure of the cladding layer observed by the experiment. With the scanning strategy of reducing laser power layer-by-layer, the addition of water cooling device and the processing condition of 0.7 mm Z-axis lift, excellent thin-walled parts can be obtained. With the increase of cladding layers, the pool volume increases, the temperature value increases, the temperature gradient, cooling rate, solidification rate, K value gradually decrease, and eventually tend to be stable, in addition, the hardness shows a fluctuating downward trend. Under the processing conditions of layer-by-layer power reduction and water cooling device, the primary dendrite arm spacing reduced to about 8.3 μm, and the average hardness at the bottom of cladding layer increased from 260 HV to 288 HV. The yield strength and tensile strength of the tensile parts prepared under forced water cooling increased to a certain extent, while the elongation slightly decreased.


2011 ◽  
Vol 480-481 ◽  
pp. 300-305
Author(s):  
Jiang Wen Liu ◽  
T.M. Yue ◽  
Zhong Ning Guo ◽  
Z. Y. Wan ◽  
G.Y. Liu

A new concavo-convex electrode has been designed and employed. And an analysis of the electrical discharge machining (EDM) mechanism of a particulate reinforced metal matrix composite with this new electrode was conducted in this study. It was found that EDM with this new electrode can accelerate the debris discharge during machining so that it has a higher MRR compared to the case where a normal electrode was employed. Moreover, by studying the surface craters, it could confirm that discharge craters tend to connect together for the normal electrode. This indicates an abnormal arcing condition. Thus, the wire electrode was easy to be broken. While for the new electrode, separated craters were observed on the machined surface. This means a stable processing condition. The experiment results reveal the processing mechanism of EDM electrical discharge machining of MMCs by employing this new electrode.


2011 ◽  
Vol 480-481 ◽  
pp. 294-299
Author(s):  
Jiang Wen Liu ◽  
T.M. Yue ◽  
Zhong Ning Guo ◽  
Z. Y. Wan ◽  
G.Y. Liu

A new concavo-convex electrode has been designed and fabricated. And an analysis of the electrical discharge machining (EDM) of a particulate reinforced metal matrix composite this new electrode was conducted in this study. The material removal rate (MRR) of new electrode and normal electrode are compared in different applied voltage and duty cycle conditions. It was found that EDM with this new electrode can accelerate the debris discharge during machining so that it has a higher MRR compared to the case where a normal electrode was employed. Moreover, by studying the waveforms, it could confirm that a stable processing condition can be obtained by employing the new electrode. The experiment results reveal that it is a feasible and effective way to machine MMCs by employing this new electrode.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 200420-200429
Author(s):  
Yan Xia ◽  
Yi Wan ◽  
Xichun Luo ◽  
Yanan Li ◽  
Jinglong Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document