Comparison of condition monitoring techniques in assessing fault severity for a wind turbine gearbox under non-stationary loading

2019 ◽  
Vol 124 ◽  
pp. 1-20 ◽  
Author(s):  
Inturi Vamsi ◽  
G.R. Sabareesh ◽  
P.K. Penumakala
Author(s):  
Alexandre Mauricio ◽  
Shuangwen Sheng ◽  
Konstantinos Gryllias

Abstract Digitally enhanced services for wind power could reduce Operations and Maintenance (O&M) costs as well as the Levelised Cost Of Energy (LCOE). Therefore, there is a continuous need for advanced monitoring techniques which can exploit the opportunities of Internet of Things (IoT) and Big Data Analytics, revolutionizing the future of the energy sector. The heart of wind turbines is a rather complex epicyclic gearbox. Among others, extremely critical gearbox components which are often responsible for machinery stops are the rolling element bearings. The vibration signatures of bearings are rather weak compared to other components, such as gears, and as a result an extended number of signal processing techniques and tools have been proposed during the last decades, focusing towards accurate, early, and on time bearing fault detection with limited false alarms and missed detections. Envelope Analysis is one of the most important methodologies, where an envelope of the vibration signal is estimated usually after filtering around a frequency band excited by impacts due to the bearing faults. Different tools, such as Kurtogram, have been proposed in order to accurately select the optimum filter parameters (center frequency and bandwidth). Cyclic Spectral Correlation and Cyclic Spectral Coherence, based on Cyclostationary Analysis, have been proved as very powerful tools for condition monitoring. The monitoring techniques seem to have reached a mature level in case a machinery operates under steady speed and load. On the other hand, in case the operating conditions change, it is still unclear whether the change of the monitoring indicators is due to the change of the health of the machinery or due to the change of the operating parameters. Recently, the authors have proposed a new tool called IESFOgram, which is based on Cyclic Spectral Coherence and can automatically select the filtering band. Furthermore, the Cyclic Spectral Coherence is integrated along the selected frequency band leading to an Improved Envelope Spectrum. In this paper, the performance of the tool is evaluated and further extended on cases operating under different speeds and different loads. The effectiveness of the methodology is tested and validated on the National Renewable Energy Laboratory (NREL) wind turbine gearbox vibration condition monitoring benchmarking data set which includes various faults with different levels of diagnostic complexity as well as various speed and load operating conditions.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Alexandre Mauricio ◽  
Shuangwen Sheng ◽  
Konstantinos Gryllias

Abstract Digitally enhanced services for wind power could reduce operations and maintenance costs as well as the levelized cost of energy. Therefore, there is a continuous need for advanced monitoring techniques, which can exploit the opportunities of internet of things and big data analytics, revolutionizing the future of the energy sector. The heart of wind turbines is a rather complex epicyclic gearbox. Among others, extremely critical gearbox components, which are often responsible for machinery stops, are the rolling element bearings. The vibration signatures of bearings are rather weak compared to other components, such as gears, and as a result, an extended number of signal processing techniques and tools have been proposed during the last decades, focusing toward accurate, early, and on time bearing fault detection with limited false alarms and missed detections. Envelope analysis is one of the most important methodologies, where an envelope of the vibration signal is estimated usually after filtering around a frequency band excited by impacts due to the bearing faults. Different tools, such as Kurtogram, have been proposed in order to accurately select the optimum filter parameters (center frequency and bandwidth). Cyclic spectral correlation (CSC) and cyclic spectral coherence (CSCoh), based on cyclostationary analysis, have been proved as very powerful tools for condition monitoring. The monitoring techniques seem to have reached a mature level in case a machinery operates under steady speed and load. On the other hand, in case the operating conditions change, it is still unclear whether the change of the monitoring indicators is due to the change of the health of the machinery or due to the change of the operating parameters. Recently, the authors have proposed a new tool called improved envelope spectrum via feature optimization-gram (IESFOgram), which is based on CSCoh and can automatically select the filtering band. Furthermore, the CSCoh is integrated along the selected frequency band leading to an improved envelope spectrum (IES). In this paper, the performance of the tool is evaluated and further extended on cases operating under different speeds and different loads. The effectiveness of the methodology is tested and validated on the National Renewable Energy Laboratory (NREL) wind turbine gearbox vibration condition monitoring benchmarking dataset, which includes various faults with different levels of diagnostic complexity as well as various speed and load operating conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
A. Romero ◽  
Y. Lage ◽  
S. Soua ◽  
B. Wang ◽  
T.-H. Gan

Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry. This paper presents a novel approach for health condition monitoring (CM) and fault diagnosis in wind turbine gearboxes using vibration analysis. This methodology is based on a machine learning algorithm that generates a baseline for the identification of deviations from the normal operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD) method for fault type recognition. Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal the fault information. The new methodology proposed for gear and bearing defect identification was validated by laboratory and field trials, comparing well with the methods reviewed in the literature.


Author(s):  
Junyu Qi ◽  
Alexandre Mauricio ◽  
Konstantinos Gryllias

Abstract Under the pressure of climate change, renewable energy gradually replaces fossil fuels and plays nowadays a significant role in energy production. The O&M costs of wind turbines may easily reach up to 25% of the total leverised cost per kWh produced over the lifetime of the turbine for a new unit. Manufacturers and operators try to reduce O&M by developing new turbine designs and by adopting condition monitoring approaches. One of the most critical assembly of wind turbines is the gearbox. Gearboxes are designed to last till the end of asset's lifetime, according to the IEC 61400-4 standards but a recent study indicated that gearboxes might have to be replaced as early as 6.5 years. A plethora of sensor types and signal processing methodologies have been proposed in order to accurately detect and diagnose the presence of a fault but often the gearbox is equipped with a limited number of sensors and a simple global diagnostic indicator is demanded, being capable to detect globally various faults of different components. The scope of this paper is the application and comparison of a number of blind global diagnostic indicators which are based on Entropy, on Negentropy, on Sparsity and on Statistics. The performance of the indicators is evaluated on a wind turbine data set with two different bearing faults. Among the different diagnostic indicators Permutation entropy, Approximate entropy, Samples entropy, Fuzzy entropy, Conditional entropy and Wiener entropy achieve the best results detecting blindly the two failure events.


Sign in / Sign up

Export Citation Format

Share Document