Comparison of Blind Diagnostic Indicators for Condition Monitoring of Wind Turbine Gearbox Bearings

Author(s):  
Junyu Qi ◽  
Alexandre Mauricio ◽  
Konstantinos Gryllias

Abstract Under the pressure of climate change, renewable energy gradually replaces fossil fuels and plays nowadays a significant role in energy production. The O&M costs of wind turbines may easily reach up to 25% of the total leverised cost per kWh produced over the lifetime of the turbine for a new unit. Manufacturers and operators try to reduce O&M by developing new turbine designs and by adopting condition monitoring approaches. One of the most critical assembly of wind turbines is the gearbox. Gearboxes are designed to last till the end of asset's lifetime, according to the IEC 61400-4 standards but a recent study indicated that gearboxes might have to be replaced as early as 6.5 years. A plethora of sensor types and signal processing methodologies have been proposed in order to accurately detect and diagnose the presence of a fault but often the gearbox is equipped with a limited number of sensors and a simple global diagnostic indicator is demanded, being capable to detect globally various faults of different components. The scope of this paper is the application and comparison of a number of blind global diagnostic indicators which are based on Entropy, on Negentropy, on Sparsity and on Statistics. The performance of the indicators is evaluated on a wind turbine data set with two different bearing faults. Among the different diagnostic indicators Permutation entropy, Approximate entropy, Samples entropy, Fuzzy entropy, Conditional entropy and Wiener entropy achieve the best results detecting blindly the two failure events.

2020 ◽  
Author(s):  
Junyu Qi ◽  
Alexandre Mauricio ◽  
Konstantinos Gryllias

Abstract Under the pressure of climate change, renewable energy gradually replaces fossil fuels and plays nowadays a significant role in energy production. Among different types of energy sources, wind power covered 14% of the EU’s electricity demand in 2018. The Operations and Maintenance (O&M) costs of wind turbines may easily reach up to 20–25% of the total leverised cost per kWh produced over the lifetime of the turbine for a new unit. According to Wood Mackenzie Power & Renewables (WMPR) onshore wind farm operators are expected to spend nearly $15 billion on O&M services in 2019. Manufacturers and operators try to reduce O&M on one hand by developing new turbine designs and on the other hand by adopting condition monitoring approaches. One of the most critical and rather complex assembly of wind turbines is the gearbox. Gearboxes are designed to last till the end of asset’s lifetime, according to the IEC 61400-4 standards. On the other hand, a recent study over approximately 350 offshore wind turbines indicated that gearboxes might have to be replaced as early as 6.5 years. Therefore a plethora of sensor types and signal processing methodologies have been proposed in order to accurately detect and diagnose the presence of a fault. Among others, Envelope Analysis is one of the most important methodologies, where an envelope of the vibration signal is estimated, usually after filtering around a selected frequency band excited by impacts due to the fault. Sometimes the gearbox is equipped with many acceleration sensors and its kinematics is clearly known. In these cases Cyclostationary Analysis and the corresponding methodologies, i.e. the Cyclic Spectral Correlation and the Cyclic Spectral Coherence, have been proposed as powerful tools. On the other hand often the gearbox is equipped with a limited number of sensors and a simple global diagnostic indicator is demanded, being capable to detect globally various faults of different components. The scope of this paper is the application and comparison of a number of blind global diagnostic indicators which are based on Entropy (Permutation entropy, Approximate entropy, Samples entropy, Fuzzy entropy, Conditional entropy and Wiener entropy), on Negentropy (Infogram), on Sparsity (Sparse-L2/L1, Sparse-L1/L0, Sparse-Gini index) and on Statistics (Mean, Standard deviation, Kurtosis, etc.). The performance of the indicators is evaluated and compared on a wind turbine data set, consisted of vibration data captured by one accelerometer mounted on six 2.5 MW wind turbines, located in a wind park in northern Sweden, where two different bearing faults have been filed, for one wind turbine, during a period of 46 months. Among the different diagnostic indicators Permutation entropy, Approximate entropy, Samples entropy, Fuzzy entropy, Conditional entropy and Wiener entropy achieve the best results detecting blindly the two failure events.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1474 ◽  
Author(s):  
Francesco Castellani ◽  
Luigi Garibaldi ◽  
Alessandro Paolo Daga ◽  
Davide Astolfi ◽  
Francesco Natili

Condition monitoring of gear-based mechanical systems in non-stationary operation conditions is in general very challenging. This issue is particularly important for wind energy technology because most of the modern wind turbines are geared and gearbox damages account for at least the 20% of their unavailability time. In this work, a new method for the diagnosis of drive-train bearings damages is proposed: the general idea is that vibrations are measured at the tower instead of at the gearbox. This implies that measurements can be performed without impacting the wind turbine operation. The test case considered in this work is a wind farm owned by the Renvico company, featuring six wind turbines with 2 MW of rated power each. A measurement campaign has been conducted in winter 2019 and vibration measurements have been acquired at five wind turbines in the farm. The rationale for this choice is that, when the measurements have been acquired, three wind turbines were healthy, one wind turbine had recently recovered from a planetary bearing fault, and one wind turbine was undergoing a high speed shaft bearing fault. The healthy wind turbines are selected as references and the damaged and recovered are selected as targets: vibration measurements are processed through a multivariate Novelty Detection algorithm in the feature space, with the objective of distinguishing the target wind turbines with respect to the reference ones. The application of this algorithm is justified by univariate statistical tests on the selected time-domain features and by a visual inspection of the data set via Principal Component Analysis. Finally, a novelty index based on the Mahalanobis distance is used to detect the anomalous conditions at the damaged wind turbine. The main result of the study is that the statistical novelty of the damaged wind turbine data set arises clearly, and this supports that the proposed measurement and processing methods are promising for wind turbine condition monitoring.


Author(s):  
Alexandre Mauricio ◽  
Shuangwen Sheng ◽  
Konstantinos Gryllias

Abstract Digitally enhanced services for wind power could reduce Operations and Maintenance (O&M) costs as well as the Levelised Cost Of Energy (LCOE). Therefore, there is a continuous need for advanced monitoring techniques which can exploit the opportunities of Internet of Things (IoT) and Big Data Analytics, revolutionizing the future of the energy sector. The heart of wind turbines is a rather complex epicyclic gearbox. Among others, extremely critical gearbox components which are often responsible for machinery stops are the rolling element bearings. The vibration signatures of bearings are rather weak compared to other components, such as gears, and as a result an extended number of signal processing techniques and tools have been proposed during the last decades, focusing towards accurate, early, and on time bearing fault detection with limited false alarms and missed detections. Envelope Analysis is one of the most important methodologies, where an envelope of the vibration signal is estimated usually after filtering around a frequency band excited by impacts due to the bearing faults. Different tools, such as Kurtogram, have been proposed in order to accurately select the optimum filter parameters (center frequency and bandwidth). Cyclic Spectral Correlation and Cyclic Spectral Coherence, based on Cyclostationary Analysis, have been proved as very powerful tools for condition monitoring. The monitoring techniques seem to have reached a mature level in case a machinery operates under steady speed and load. On the other hand, in case the operating conditions change, it is still unclear whether the change of the monitoring indicators is due to the change of the health of the machinery or due to the change of the operating parameters. Recently, the authors have proposed a new tool called IESFOgram, which is based on Cyclic Spectral Coherence and can automatically select the filtering band. Furthermore, the Cyclic Spectral Coherence is integrated along the selected frequency band leading to an Improved Envelope Spectrum. In this paper, the performance of the tool is evaluated and further extended on cases operating under different speeds and different loads. The effectiveness of the methodology is tested and validated on the National Renewable Energy Laboratory (NREL) wind turbine gearbox vibration condition monitoring benchmarking data set which includes various faults with different levels of diagnostic complexity as well as various speed and load operating conditions.


Author(s):  
Himani Himani ◽  
Navneet Sharma

<p><span>This paper describes the design and implementation of Hardware in the Loop (HIL) system D.C. motor based wind turbine emulator for the condition monitoring of wind turbines. Operating the HIL system, it is feasible to replicate the actual operative conditions of wind turbines in a laboratory environment. This method simply and cost-effectively allows evaluating the software and hardware controlling the operation of the generator. This system has been implemented in the LabVIEW based programs by using Advantech- USB-4704-AE Data acquisition card. This paper describes all the components of the systems and their operations along with the control strategies of WTE such as Pitch control and MPPT. Experimental results of the developed simulator using the test rig are benchmarked with the previously verified WT test rigs developed at the Durham University and the University of Manchester in the UK by using the generated current spectra of the generator. Electric subassemblies are most vulnerable to damage in practice, generator-winding faults have been introduced and investigated using the terminal voltage. This wind turbine simulator can be analyzed or reconfigured for the condition monitoring without the requirement of actual WT’s.</span></p>


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
A. Romero ◽  
Y. Lage ◽  
S. Soua ◽  
B. Wang ◽  
T.-H. Gan

Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry. This paper presents a novel approach for health condition monitoring (CM) and fault diagnosis in wind turbine gearboxes using vibration analysis. This methodology is based on a machine learning algorithm that generates a baseline for the identification of deviations from the normal operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD) method for fault type recognition. Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal the fault information. The new methodology proposed for gear and bearing defect identification was validated by laboratory and field trials, comparing well with the methods reviewed in the literature.


Sign in / Sign up

Export Citation Format

Share Document