A focusing MUSIC algorithm for baseline-free Lamb wave damage localization

2022 ◽  
Vol 164 ◽  
pp. 108242
Author(s):  
Caibin Xu ◽  
Jishuo Wang ◽  
Shenxin Yin ◽  
Mingxi Deng
2018 ◽  
Vol 18 (1) ◽  
pp. 334-344 ◽  
Author(s):  
Zhenhua Tian ◽  
Lingyu Yu ◽  
Xiaoyi Sun ◽  
Bin Lin

Fiber Bragg gratings are known being immune to electromagnetic interference and emerging as Lamb wave sensors for structural health monitoring of plate-like structures. However, their application for damage localization in large areas has been limited by their direction-dependent sensor factor. This article addresses such a challenge and presents a robust damage localization method for fiber Bragg grating Lamb wave sensing through the implementation of adaptive phased array algorithms. A compact linear fiber Bragg grating phased array is configured by uniformly distributing the fiber Bragg grating sensors along a straight line and axially in parallel to each other. The Lamb wave imaging is then performed by phased array algorithms without weighting factors (conventional delay-and-sum) and with adaptive weighting factors (minimum variance). The properties of both imaging algorithms, as well as the effects of fiber Bragg grating’s direction-dependent sensor factor, are characterized, analyzed, and compared in details. The results show that this compact fiber Bragg grating array can precisely locate damage in plates, while the comparisons show that the minimum variance method has a better imaging resolution than that of the delay-and-sum method and is barely affected by fiber Bragg grating’s direction-dependent sensor factor. Laboratory tests are also performed with a four–fiber Bragg grating array to detect simulated defects at different directions. Both delay-and-sum and minimum variance methods can successfully locate defects at different positions, and their results are consistent with analytical predictions.


2020 ◽  
Vol 69 (10) ◽  
pp. 8076-8087 ◽  
Author(s):  
Zhe Wang ◽  
Songling Huang ◽  
Shen Wang ◽  
Qing Wang ◽  
Wei Zhao

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4166 ◽  
Author(s):  
Bin Liu ◽  
Tingzhang Liu ◽  
Jianfei Zhao

In this paper, a wavenumber–searching method based on time-domain compensation is proposed to obtain the wavenumber of the Lamb wave array received signal. In the proposed method, the time-domain sampling signal of the linear piezoelectric transducer (PZT) sensor array is converted into a spatial sampling signal using the searching wavenumber. The two–dimensional time-spatial-domain Lamb wave received signal of the linear PZT sensor array is then converted into a one-dimensional synthesized spatial sampling signal. Further, the sum of squared errors between the synthesized spatial sampling signal and its Morlet wavelet fitting signal is calculated at each searching wavenumber. Finally, the wavenumber of the Lamb wave array received signal is obtained as the searching wavenumber corresponding to the minimum error. This method was validated on a 2024-T3 aluminum alloy. The validation results showed that the proposed method can successfully obtain the wavenumber of the Lamb wave array received signal, whose spatial sampling rate does not satisfy the Nyquist sampling theorem; the wavenumber error does not exceed 2.2 rad/m. Damage localization based on the proposed method was also validated on a carbon fiber composite laminate plate, and the maximum damage localization error was no more than 2.11 cm.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shuai Jiang ◽  
Yiping Shen ◽  
Songlai Wang ◽  
Yanfeng Peng ◽  
Yi Liu

Piezoelectric fiber rosettes respond to the directivity characteristics of Lamb waves, and therefore, are useful in detecting the Lamb wave propagation direction. Considering material damage as a secondary wave source, two piezoelectric fiber rosettes are arranged to measure the scattered wave propagation directions for damage localization. The influences of various rosette configurations, i.e., 45°-rectangular, 135°-rectangular, 60°-delta, and 120°-delta, on the estimation accuracy of the propagation direction are investigated in this paper. The response of the piezoelectric fiber to the A 0 mode Lamb wave under narrowband tone-burst excitation is theoretically derived. Experimental tests and piezoelectric coupling simulations are performed to obtain the Lamb wave signal of each fiber. The matching pursuit (MP) algorithm is applied to extract the weak damage-related wave packet by using Hann-windowed narrowband excitation as an atom. The Lamb wave propagation directions are estimated based on the error function. The accuracies of the directions with 4 types of rosette configurations are compared, and their error sources are discussed. The results show that the accuracy of the 135°-rectangular configuration is relatively satisfactory, and the errors depend on the size and location of each fiber in the rosette. The proposed damage localization method is validated by experimental tests. The predicted locations are close to the actual damage location. The research results are significant for piezoelectric fiber rosette design and optimization and damage location without wave speed or time-of-flight information in complex or irregular structures.


2019 ◽  
Vol 19 (1) ◽  
pp. 305-321
Author(s):  
Marc Rébillat ◽  
Nazih Mechbal

Monitoring in real time and autonomously the health state of aeronautic structures is referred to as structural health monitoring and is a process decomposed in four steps: damage detection, localization, classification, and quantification. In this work, the structures under study are aeronautic geometrically complex structures equipped with a bonded piezoelectric network. When interrogating such a structure, the resulting data lie along three dimensions (namely, the “actuator,”“sensor,” and “time” dimensions) and can thus be interpreted as three-way tensors. The fact that Lamb wave structural health monitoring–based data are naturally three-way tensors is here investigated for damage localization purpose. In this article, it is demonstrated that under classical assumptions regarding wave propagation, the canonical polyadic decomposition of rank 2 of the tensors build from the phase and amplitude of the difference signals between a healthy and damaged states provides direct access to the distances between the piezoelectric elements and damage. This property is used here to propose an original tensor-based damage localization algorithm. This algorithm is successfully validated on experimental data coming from a scale one part of an airplane nacelle (1.5 m in height for a semi circumference of 4 m) equipped with 30 piezoelectric elements and many stiffeners. Obtained results demonstrate that the tensor-based localization algorithm can locate a damage within this structure with an average precision of 10 cm and with a precision lower than 1 cm at best. In comparison with standard damage localization algorithms (delay-and-sum, reconstruction algorithm for probabilistic inspection of defects, and ellipse- or hyperbola-based algorithms), the proposed algorithm appears as more precise and robust on the investigated cases. Furthermore, it is important to notice that this algorithm only takes the raw signals as inputs and that no specific pre-processing steps or finely tuned external parameters are needed. This algorithm is thus very appealing as reliable and easy to settle damage localization timeliness with low false alarm rates are one of the key successes to shorten the gap between research and industrial deployment of structural health monitoring processes.


2013 ◽  
Vol 347-350 ◽  
pp. 36-39 ◽  
Author(s):  
Ya Jie Sun ◽  
Yong Hong Zhang ◽  
Cheng Shan Qian

Phased array theory is analyzed. The PZT phased array is applied in SHM for the Al plate to identify the hole in the structure. The Lamb wave beam steering is controlled by adding the time delay to the signals. The structure can be scanned in half plane by using the phased array theory to control the Lamb wave beam steering. The damage in the structure can be recognized and localized by the phased array method. The identification result is shown on mapped image. The phased array damage localization method is verified by the experiment and the result shows that the method is effective to recognize the hole damage in the structure.


2013 ◽  
Vol 60 (10) ◽  
pp. 2089-2097 ◽  
Author(s):  
Alessandro Perelli ◽  
Tommaso Di Ianni ◽  
Alessandro Marzani ◽  
Luca De Marchi ◽  
Guido Masetti

Sign in / Sign up

Export Citation Format

Share Document