TVMS calculation and dynamic analysis of carburized spur gear pair

2022 ◽  
Vol 166 ◽  
pp. 108436
Author(s):  
Vikash Kumar ◽  
Anurag Kumar ◽  
Sanjeev Kumar ◽  
Somnath Sarangi
Keyword(s):  
2019 ◽  
Vol 97 (2) ◽  
pp. 1403-1424 ◽  
Author(s):  
Guanghui Liu ◽  
Jun Hong ◽  
Robert G. Parker

2015 ◽  
Vol 764-765 ◽  
pp. 374-378 ◽  
Author(s):  
Long Chang Hsieh ◽  
Tzu Hsia Chen ◽  
Hsiu Chen Tang

Traditionally, the reduction ratio of a spur gear pair is limited to 4 ~ 7. For a spur gear transmission with reduction ratio more than 7, it is necessary to have more than two gear pairs. Consider the cost of production, this paper proposes a helical spur gear reducer with one gear pair having reduction ratio 19.25 to substitute the gear reducer with two gear pairs. Based on the involute theorem, the gear data of helical spur gear pair is obtained. According to the gear data, its corresponding engineering drawing is accomplished. This manuscript verify that one spur gear pair also can have high reduction ratio (20 ~ 30).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nan Gao ◽  
Shiyu Wang ◽  
Muhammad Asad Ur Rehman Bajwa

PurposeGear transmissions are widely utilized in practice. This paper aims to uncouple the crack feature from the cracked time-varying mesh stiffness (TVMS) and investigate the effects of the crack on the nonlinear dynamics of a spur gear pair.Design/methodology/approachAn approximate method to simulate the cracked TVMS is proposed by using an amplitude modulation function. The ratio of mesh stiffness loss is introduced to estimate the TVMS with different crack depths and angles. The dynamic responses are obtained by solving a torsional model which takes the non-loaded static transmission error, the backlash and the cracked TVMS into account. By using the bifurcation diagram, the largest Lyapunov exponent (LLE) and dynamic mesh force, the influences of crack on nonlinear behaviors are examined. The dynamic characteristics are identified from the phase diagram, Poincaré map, dynamic mesh force, time series and FFT spectra.FindingsThe comparison between the healthy and cracked gear pairs indicates that the crack affects the system motions, such as the obvious changes of impact force and unpredictable instability. Besides, the additive and difference combination frequencies can be found in periodic-1 and -2 motions, but they are covered in periodic-3 and chaotic motions. Deeper crack is an important determinant of the nonlinear behaviors at a higher speed.Originality/valueThe research provides an interesting perspective on cracked TVMS and reveals the connection between crack and nonlinear behaviors of the gear pairs.


Author(s):  
Pengfei Liu ◽  
Lingyun Zhu ◽  
Xiangfeng Gou ◽  
Jianfei Shi ◽  
Guoguang Jin

2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Huaiju Liu ◽  
Caichao Zhu ◽  
Zhanjiang Wang ◽  
Ye Zhou ◽  
Yuanyuan Zhang

A thermal elastohydrodynamic lubrication (TEHL) model is developed for a coated spur gear pair to investigate the effect of soft coatings and hard coatings on the tribological behavior of such a gear pair during meshing. The coating properties, i.e., the ratio of the Young's modulus between the coating and the substrate, and the coating thickness, are represented in the calculation of the elastic deformation. Discrete convolution, fast Fourier transform (DC-FFT) is utilized for the fast calculation of the surface deformation. The variation of the radius of curvature, the rolling speed, the slide-to-roll ratio, and the tooth load along the line of action (LOA) during meshing is taken into account and the transient squeeze effect is considered in the Reynolds equation. Energy equations of the solids and the oil film are derived. The temperature field and the pressure field are solved iteratively. The tribological behavior is evaluated in terms of the minimum film thickness, the maximum pressure, the temperature rise, the coefficient of friction, and the frictional power loss of the tooth contact during meshing. The results show discrepancies between the soft coating results and hard coating results.


2004 ◽  
Vol 23 (3) ◽  
pp. 179-187 ◽  
Author(s):  
Shen Yongjun ◽  
Yang Shaopu ◽  
Pan Cunzhi ◽  
Liu Xiandong

2001 ◽  
Vol 123 (3) ◽  
pp. 311-317 ◽  
Author(s):  
J. H. Kuang ◽  
A. D. Lin

In this paper, the effect of tooth wear on the vibration spectrum variation of a rotating spur gear pair is studied. In order to approximate the dynamic characteristics of an engaging spur gear pair, the load sharing alternation, position dependent mesh stiffness, damping factor and friction coefficient are considered in the mathematical model. The wear prediction model proposed by Flodin et al. is used to simulate the tooth profile wear process. The variation of the vibration spectra introduced from the interaction between the sliding wear and the dynamic load is simulated and analyzed. Numerical results indicate that the dynamic load histogram of an engaging spur gear pair may change greatly with the tooth wear. This finding implies that the variation of the gear vibration spectrum might be used to monitor the tooth wear of an engaging spur gear pair.


Sign in / Sign up

Export Citation Format

Share Document