Algorithms for spectrum background estimation of non-stationary signals

2022 ◽  
Vol 167 ◽  
pp. 108551
Author(s):  
Omri Matania ◽  
Renata Klein ◽  
Jacob Bortman
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Wei Xiong ◽  
Lei Zhou ◽  
Ling Yue ◽  
Lirong Li ◽  
Song Wang

AbstractBinarization plays an important role in document analysis and recognition (DAR) systems. In this paper, we present our winning algorithm in ICFHR 2018 competition on handwritten document image binarization (H-DIBCO 2018), which is based on background estimation and energy minimization. First, we adopt mathematical morphological operations to estimate and compensate the document background. It uses a disk-shaped structuring element, whose radius is computed by the minimum entropy-based stroke width transform (SWT). Second, we perform Laplacian energy-based segmentation on the compensated document images. Finally, we implement post-processing to preserve text stroke connectivity and eliminate isolated noise. Experimental results indicate that the proposed method outperforms other state-of-the-art techniques on several public available benchmark datasets.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 65
Author(s):  
Quan Zhao ◽  
Ling Tong ◽  
Bo Gao

The classical two-channel push-pull chirp transform spectrometer (CTS) has been widely applied in satellite-borne remote sensing systems for earth observation and deep space exploration. In this paper, we present two simplified structures with single M(l)-C(s) CTS arrangements for the spectral analysis of stationary signals. A simplified CTS system with a single M(l)-C(s) arrangement and a time delay line was firstly developed. Another simplified structure of CTS with a M(l)-C(s) arrangement and a frequency conversion channel was also developed for spectral analysis of stationary signals. Simulation and experiment results demonstrate that the two simplified arrangements can both realize spectrum measurement for the stationary signals and obtain the same frequency resolution, amplitude accuracy and system sensitivity as that of the classical two-channel push–pull CTS system. Compared to the classical CTS structure, the two simplified arrangements require fewer devices, save power consumption and have reduced mass. The matching problem between the two channels can be avoided in the two simplified arrangements. The simplified CTS arrangements may have potential application in the spectrum measurement of stationary signals in the field of aviation and spaceflight.


2010 ◽  
Vol 03 (02) ◽  
pp. 193-199 ◽  
Author(s):  
Marwa Chendeb ◽  
Mohamad Khalil ◽  
David Hewson ◽  
Jacques Duchên

2012 ◽  
Vol 18 (4) ◽  
pp. 667-675 ◽  
Author(s):  
Paul Cueva ◽  
Robert Hovden ◽  
Julia A. Mundy ◽  
Huolin L. Xin ◽  
David A. Muller

AbstractThe high beam current and subangstrom resolution of aberration-corrected scanning transmission electron microscopes has enabled electron energy loss spectroscopy (EELS) mapping with atomic resolution. These spectral maps are often dose limited and spatially oversampled, leading to low counts/channel and are thus highly sensitive to errors in background estimation. However, by taking advantage of redundancy in the dataset map, one can improve background estimation and increase chemical sensitivity. We consider two such approaches—linear combination of power laws and local background averaging—that reduce background error and improve signal extraction. Principal component analysis (PCA) can also be used to analyze spectrum images, but the poor peak-to-background ratio in EELS can lead to serious artifacts if raw EELS data are PCA filtered. We identify common artifacts and discuss alternative approaches. These algorithms are implemented within the Cornell Spectrum Imager, an open source software package for spectroscopic analysis.


2022 ◽  
Vol 168 ◽  
pp. 108600
Author(s):  
D. Abboud ◽  
Y. Marnissi ◽  
A. Assoumane ◽  
Y. Hawwari ◽  
M. Elbadaoui

2016 ◽  
Author(s):  
Eric Truslow ◽  
Steven Golowich ◽  
Dimitris Manolakis

Sign in / Sign up

Export Citation Format

Share Document