scholarly journals miR-143 Regulates Lysosomal Enzyme Transport across the Blood-Brain Barrier and Transforms CNS Treatment for Mucopolysaccharidosis Type I

2020 ◽  
Vol 28 (10) ◽  
pp. 2161-2176
Author(s):  
Yi Lin ◽  
Xiaohong Wang ◽  
Kevin P. Rose ◽  
Mei Dai ◽  
Jingfen Han ◽  
...  
2019 ◽  
Vol 126 (2) ◽  
pp. S83-S84
Author(s):  
Sachiho Kida ◽  
Masafumi Kinoshita ◽  
Satowa Tanaka ◽  
Miho Okumura ◽  
Yuri Koshimura ◽  
...  

2020 ◽  
Vol 129 (2) ◽  
pp. S125-S126
Author(s):  
Dao Pan ◽  
Yi Lin ◽  
Xiaohong Wang ◽  
Kevin Rose ◽  
Mei Dai ◽  
...  

2015 ◽  
Vol 36 (3) ◽  
pp. 476-486 ◽  
Author(s):  
Akihiko Urayama ◽  
Jeffrey H Grubb ◽  
William S Sly ◽  
William A Banks

The adult blood–brain barrier, unlike the neonatal blood–brain barrier, does not transport lysosomal enzymes into brain, making enzyme replacement therapy ineffective in treating the central nervous system symptoms of lysosomal storage diseases. However, enzyme transport can be re-induced with alpha-adrenergics. Here, we examined agents that are known to alter the blood–brain barrier transport of large molecules or to induce lysosomal enzyme transport across the blood–brain barrier ((±)epinephrine, insulin, retinoic acid, and lipopolysaccharide) in 2-week-old and adult mice. In 2-week-old adolescent mice, all these pharmacologic agents increased brain and heart uptake of phosphorylated human β-glucuronidase. In 8-week-old adult mice, manipulations with (±)epinephrine, insulin, and retinoic acid were significantly effective on uptake by brain and heart. The increased uptake of phosphorylated human  β-glucuronidase was inhibited by mannose 6-phosphate for the agents (±)epinephrine and retinoic acid and by L-NG-nitroarginine methyl ester for the agent lipopolysaccharide in neonatal and adult mice. An in situ brain perfusion study revealed that retinoic acid directly modulated the transport of phosphorylated human β-glucuronidase across the blood–brain barrier. The present study indicates that there are multiple opportunities to at least transiently induce phosphorylated human β-glucuronidase transport at the adult blood–brain barrier.


2012 ◽  
Vol 123 ◽  
pp. 75-85 ◽  
Author(s):  
Raffaella Gesuete ◽  
Amy E. B. Packard ◽  
Keri B. Vartanian ◽  
Valerie K. Conrad ◽  
Susan L. Stevens ◽  
...  

2018 ◽  
Vol 123 (2) ◽  
pp. S134
Author(s):  
Hiroyuki Sonoda ◽  
Hideto Morimoto ◽  
Eiji Yoden ◽  
Yuri Koshimura ◽  
Masafumi Kinoshita ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamid Salimi ◽  
Matthew D. Cain ◽  
Xiaoping Jiang ◽  
Robyn A. Roth ◽  
Wandy L. Beatty ◽  
...  

ABSTRACT Venezuelan and western equine encephalitis viruses (VEEV and WEEV, respectively) invade the central nervous system (CNS) early during infection, via neuronal and hematogenous routes. While viral replication mediates host shutoff, including expression of type I interferons (IFN), few studies have addressed how alphaviruses gain access to the CNS during established infection or the mechanisms of viral crossing at the blood-brain barrier (BBB). Here, we show that hematogenous dissemination of VEEV and WEEV into the CNS occurs via caveolin-1 (Cav-1)-mediated transcytosis (Cav-MT) across an intact BBB, which is impeded by IFN and inhibitors of RhoA GTPase. Use of reporter and nonreplicative strains also demonstrates that IFN signaling mediates viral restriction within cells comprising the neurovascular unit (NVU), differentially rendering brain endothelial cells, pericytes, and astrocytes permissive to viral replication. Transmission and immunoelectron microscopy revealed early events in virus internalization and Cav-1 association within brain endothelial cells. Cav-1-deficient mice exhibit diminished CNS VEEV and WEEV titers during early infection, whereas viral burdens in peripheral tissues remained unchanged. Our findings show that alphaviruses exploit Cav-MT to enter the CNS and that IFN differentially restricts this process at the BBB. IMPORTANCE VEEV, WEEV, and eastern equine encephalitis virus (EEEV) are emerging infectious diseases in the Americas, and they have caused several major outbreaks in the human and horse population during the past few decades. Shortly after infection, these viruses can infect the CNS, resulting in severe long-term neurological deficits or death. Neuroinvasion has been associated with virus entry into the CNS directly from the bloodstream; however, the underlying molecular mechanisms have remained largely unknown. Here, we demonstrate that following peripheral infection alphavirus augments vesicular formation/trafficking at the BBB and utilizes Cav-MT to cross an intact BBB, a process regulated by activators of Rho GTPases within brain endothelium. In vivo examination of early viral entry in Cav-1-deficient mice revealed significantly lower viral burdens in the brain than in similarly infected wild-type animals. These studies identify a potentially targetable pathway to limit neuroinvasion by alphaviruses.


2004 ◽  
Vol 183 (1) ◽  
pp. 235-241 ◽  
Author(s):  
C H J Verhoelst ◽  
V M Darras ◽  
S A Roelens ◽  
G M Artykbaeva ◽  
S Van der Geyten

It is widely accepted that type II iodothyronine deiodinase (D2) is mostly present in the brain, where it maintains the homeostasis of thyroid hormone (TH) levels. Although intensive studies have been performed on activity and mRNA levels of the deiodinases, very little is known about their expression at the protein level due to the lack of specific antisera. The current study reports the production of a specific D2 polyclonal antiserum and its use in the comparison of D2 protein distribution with that of type I (D1) and type III (D3) deiodinase protein in the choroid plexus at the blood–brain barrier level. Immunocytochemistry showed very high D2 protein expression in the choroid plexus, especially in the epithelial cells, whereas the D1 and D3 proteins were absent. Furthermore, dexamethasone treatment led to an up-regulation of the D2 protein in the choroid plexus. The expression of D2 protein in the choroid plexus led to a novel insight into the working mechanism of the uptake and transport of thyroid hormones along the blood–brain barrier in birds. It is hypothesized that D2 allows the prohormone thyroxine (T4) to be converted into the active 3,5,3′-triiodothyronine (T3). Within the choroidal epithelial cells. T3 is subsequently bound to its carrier protein, transthyretin (TTR), to allow transport through the cerebrospinal fluid. Neurons can thus not only be provided with a sufficient T3 level via the aid of the astrocytes, as was hypothesized previously based on in situ hybridization data, but also by means of T4 deiodination by D2, directly at the blood–brain barrier level.


Sign in / Sign up

Export Citation Format

Share Document