El Niño controls Holocene rabbit and hare populations in Baja California

2015 ◽  
Vol 84 (1) ◽  
pp. 46-56 ◽  
Author(s):  
Isaac A. Hart ◽  
Jack M. Broughton ◽  
Ruth Gruhn

The El Niño/Southern Oscillation (ENSO) is a major source of climatic variation worldwide, with significant impacts on modern human and animal populations. However, few detailed records exist on the long-term effects of ENSO on prehistoric vertebrate populations. Here we examine how lagomorph (rabbit and hare) deposition rate, population age structure and taxonomic composition from Abrigo de los Escorpiones, a well-dated, trans-Holocene vertebrate fauna from northern Baja California, Mexico, vary as a function of the frequency of wet El Niño events and eastern Pacific sea-surface temperatures (SSTs) derived from eastern Pacific geological records. Faunal indices vary significantly in response to El Niño-based precipitation and SST, with substantial moisture-driven variability in the middle and late Holocene. The late Holocene moisture pulse is coincident with previously documented changes in the population dynamics of other vertebrates, including humans. As the frequency and intensity of ENSO is anticipated to vary in the future, these results have important implications for change in future vertebrate populations.

2017 ◽  
Vol 8 (4) ◽  
pp. 1009-1017 ◽  
Author(s):  
Sébastien B. Lambert ◽  
Steven L. Marcus ◽  
Olivier de Viron

Abstract. El Niño–Southern Oscillation (ENSO) events are classically associated with a significant increase in the length of day (LOD), with positive mountain torques arising from an east–west pressure dipole in the Pacific driving a rise of atmospheric angular momentum (AAM) and consequent slowing of the Earth's rotation. The large 1982–1983 event produced a lengthening of the day of about 0.9 ms, while a major ENSO event during the 2015–2016 winter season produced an LOD excursion reaching 0.81 ms in January 2016. By evaluating the anomaly in mountain and friction torques, we found that (i) as a mixed eastern–central Pacific event, the 2015–2016 mountain torque was smaller than for the 1982–1983 and 1997–1998 events, which were pure eastern Pacific events, and (ii) the smaller mountain torque was compensated for by positive friction torques arising from an enhanced Hadley-type circulation in the eastern Pacific, leading to similar AAM–LOD signatures for all three extreme ENSO events. The 2015–2016 event thus contradicts the existing paradigm that mountain torques cause the Earth rotation response for extreme El Niño events.


2019 ◽  
Vol 92 (1) ◽  
pp. 98-108 ◽  
Author(s):  
Mark Constantine ◽  
Minkoo Kim ◽  
Jungjae Park

AbstractWe present a multiproxy record using pollen, magnetic susceptibility, carbon isotopic composition, carbon/nitrogen ratio, and particle size of mid- to late Holocene environmental changes based on a sediment core from the Pomaeho lagoon on the east coast of Korea. The records indicate that climate deteriorations around 6400 cal yr BP and 4000 cal yr BP caused rapid vegetation changes in the study area, which were presumably attributable to low sunspot activity and strong El Niño–like conditions, respectively. These two cooling events were likely modulated by different climate mechanisms, as El Niño–Southern Oscillation activity began to strengthen around 5000 cal yr BP. These events may have had a substantial impact on ancient societies in the study area. Combining our results with archaeological findings indicated that climate deterioration led to drastic declines in local populations around 6400 cal yr BP, 4400 cal yr BP, and 4000 cal yr BP. Because of its high population, coastal East Asia (e.g., eastern China, Japan, and Korea) is particularly vulnerable to potential cooling events in the future. Therefore, there is a strong need for detailed paleoclimate information in this region.


2011 ◽  
Vol 24 (3) ◽  
pp. 708-720 ◽  
Author(s):  
Jin-Yi Yu ◽  
Seon Tae Kim

Abstract This study examines the linkages between leading patterns of interannual sea level pressure (SLP) variability over the extratropical Pacific (20°–60°N) and the eastern Pacific (EP) and central Pacific (CP) types of El Niño–Southern Oscillation (ENSO). The first empirical orthogonal function (EOF) mode of the extratropical SLP anomalies represents variations of the Aleutian low, and the second EOF mode represents the North Pacific Oscillation (NPO) and is characterized by a meridional SLP anomaly dipole with a nodal point near 50°N. It is shown that a fraction of the first SLP mode can be excited by both the EP and CP types of ENSO. The SLP response to the EP type is stronger and more immediate. The tropical–extratropical teleconnection appears to act more slowly for the CP ENSO. During the decay phase of EP events, the associated extratropical SLP anomalies shift from the first SLP mode to the second SLP mode. As the second SLP mode grows, subtropical SST anomalies are induced beneath via surface heat flux anomalies. The SST anomalies persist after the peak in strength of the second SLP mode, likely because of the seasonal footprinting mechanism, and lead to the development of the CP type of ENSO. This study shows that the CP ENSO is an extratropically excited mode of tropical Pacific variability and also suggests that the decay of an EP type of ENSO can lead to the onset of a CP type of ENSO with the aid of the NPO. This extratropical linking mechanism appears to be at work during the 1972, 1982, and 1997 strong El Niño events, which were all EP events and were all followed by strong CP La Niña events after the NPO was excited in the extratropics. This study concludes that extratropical SLP variations play an important role in exciting the CP type of ENSO and in linking the transitions from the EP to CP events.


2011 ◽  
Vol 24 (2) ◽  
pp. 543-562 ◽  
Author(s):  
Masahiro Watanabe ◽  
Minoru Chikira ◽  
Yukiko Imada ◽  
Masahide Kimoto

Abstract The high sensitivity of the El Niño–Southern Oscillation (ENSO) to cumulus convection is examined by means of a series of climate simulations using an updated version of the Model for Interdisciplinary Research on Climate (MIROC), called MIROC5. Given that the preindustrial control run using MIROC5 shows a realistic ENSO, the integration is repeated with four different values of the parameter, λ, which affects the efficiency of the entrainment rate in cumuli. The ENSO amplitude is found to be proportional to λ−1 and to vary from 0.6 to 1.6 K. A comparison of four experiments reveals the mechanisms for which the cumulus convections control behavior of ENSO in MIROC as follows. Efficient entrainment due to a large λ increases congestus clouds over the intertropical convergence zone (ITCZ) and reduces the vertical temperature gradient over the eastern Pacific, resulting in a wetter ITCZ and drier cold tongue via accelerated meridional circulation. The dry cold tongue then shifts the atmospheric responses to El Niño/La Niña westward, thereby reducing the effective Bjerknes feedback. The first half of these processes is identifiable in a companion set of atmosphere model experiments, but the difference in mean precipitation contrast is quite small. On one hand, the mean meridional precipitation contrast over the eastern Pacific is a relevant indicator of the ENSO amplitude in MIROC. On the other hand, the nonlinear feedback from ENSO affects the mean state, the latter therefore not regarded as a fundamental cause for different ENSO amplitudes.


2021 ◽  
pp. 1
Author(s):  
Gloria L Manney ◽  
Michaela I Hegglin ◽  
Zachary D Lawrence

AbstractThe relationship of upper tropospheric jet variability to El Niño / Southern Oscillation (ENSO) in reanalysis datasets is analyzed for 1979–2018, revealing robust regional and seasonal variability. Tropical jets associated with monsoons and the Walker circulation are weaker and the zonal mean subtropical jet shifts equatorward in both hemispheres during El Niño, consistent with previous findings. Regional and seasonal variations are analyzed separately for subtropical and polar jets. The subtropical jet shifts poleward during El Niño over the NH eastern Pacific in DJF, and in some SH regions in MAMand SON. Subtropical jet altitudes increase during El Niño, with significant changes in the zonal mean in the NH and during summer/fall in the SH. Though zonal mean polar jet correlations with ENSO are rarely significant, robust regional/seasonal changes occur: The SH polar jet shifts equatorward during El Niño over Asia and the western Pacific in DJF, and poleward over the eastern Pacific in JJA and SON. Polar jets are weaker (stronger) during El Niño in the western (eastern) hemisphere, especially in the SH; conversely, subtropical jets are stronger (weaker) in the western (eastern) hemisphere during El Niño in winter and spring; these opposing changes, along with an anticorrelation between subtropical and polar jet windspeed, reinforce subtropical/polar jet strength differences during El Niño, and suggest ENSO-related covariability of the jets. ENSO-related jet latitude, altitude, and windspeed changes can reach 4(3)°, 0.6(0.3) km, and 6(3) ms−1, respectively, for the subtropical (polar) jets.


2021 ◽  
Vol 168 (12) ◽  
Author(s):  
José Francisco Carminatti Wenceslau ◽  
Mohd Uzair Rusli ◽  
Mohd Fadzil Akhir ◽  
Giacomo Santini ◽  
Juanita Joseph

Sign in / Sign up

Export Citation Format

Share Document