Investigation on the potential use of the mimetic peroxidase-catalyzed reaction of hydrogen peroxide and o-hydroxyphenylfluorone in fluorescence analysis

2000 ◽  
Vol 406 (2) ◽  
pp. 209-215 ◽  
Author(s):  
Qiu-ying Chen ◽  
Dong-hui Li ◽  
Qing-zhi Zhu ◽  
Huang-hao Yang ◽  
Hong Zheng ◽  
...  
1996 ◽  
Vol 118 (1) ◽  
pp. 2-8 ◽  
Author(s):  
M. Anheden ◽  
D. Y. Goswami ◽  
G. Svedberg

This paper presents some of the experimental results from a study conducted to demonstrate the potential use of photocatalytic oxidation for decolorization and COD reduction of wastewater from 5–fluorouracil manufacturing. A series of batch experiments, were carried out using diluted solutions of the wastewater with 0.1 percent w/v TiO2. Low pressure mercury lamps were used to simulate the UV part of sunlight. The experiments showed that a complete decolorization and a substantial reduction of COD was achieved within 20 hours with a 20 percent solution. During the reaction period, the pH was noted to decrease considerably, indicating formation of acids. Adding hydrogen peroxide to the solution was found to significantly increase the reaction rates. Adding 2400 ppm of H2O2 gave an 80 percent decrease in color in one hour and a 70-80 percent decrease in COD in 20 hours. The influence of UV-light intensity was also examined. This experiment showed that with a UV-intensity of 15 W/m2, i.e., a cloudy day, the decolorization rate was still considerable, while the COD reduction rate was very low.


2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Wei Kheng Teoh ◽  
Zaharah Ibrahim ◽  
Shafinaz Shahir

The potential use of Bacillus licheniformis coated bioparticles for hydrogen peroxide (H2O2) degradation was assessed in this study. Bioparticles were made by mixing zeolite, activated carbon and cement in ratio 20:5:6 for attachment of biofilm. The efficiency of H2O2 degradation was examined in the presence and absence of biofilm (control) on bioparticles. Optimisation of biofilm development (7 and 10 days) and reusability were also investigated for H2O2degradation. Actively growing bacterial suspension (late exponential phase) of B.licheniformis was used in development of pure culture biofilm. The 7–day biofilm coated bioparticles system successfully achieved complete H2O2 degradation within an hour (highest rate = 1.17 % H2O2 degraded per minute) while the control showed no significant H2O2 degradation. After repeated use of biofilm coated bioparticles, the rate of H2O2 degradation declined to 0.654 % H2O2degraded per minute, and second use, the rate of H2O2 degradation was 0.166 % H2O2 degraded per minute. Field Emission Scanning Electron Microscope (FESEM) images of the biofilm coated bioparticles showed the attachment of cells and formation of extracellular polymeric substances (EPS), whereas the control showed no biofilm formed.


2009 ◽  
Vol 23 (1) ◽  
pp. 69-74 ◽  
Author(s):  
F. C. Brassington ◽  
J. P. Whitter ◽  
R. A. Macdonald ◽  
J. Dixon

HortScience ◽  
1991 ◽  
Vol 26 (12) ◽  
pp. 1512-1514 ◽  
Author(s):  
Charles F. Forney ◽  
Roger E. Rij ◽  
Ricardo Denis-Arrue ◽  
Joseph L. Smilanick

The potential use of vapor phase hydrogen peroxide (VPHP) to prevent decay caused by Botrytis cinerea Pers. ex Fr. in table grapes (Vitis vinifera L.) was investigated. `Thompson Seedless' and `Red Globe' grapes, inoculated with Botrytis cinerea spores, were placed in polyethylene bags and flushed for 10 minutes with VPHP generated from a 30% to 35% solution of liquid hydrogen peroxide at 40C. Immediately after treatment, bags were sealed and held at 10C. Vapor phase hydrogen peroxide significantly reduced the number of terminable Botrytis spores on grapes. The number of terminable spores on `Thompson Seedless' and `Red Globe' grapes had been reduced 81% and 62%, respectively, 24 hours following treatment. The incidence of decay on inoculated `Thompson Seedless' and `Red Globe' grapes was reduced 33% and 16%, respectively, after 8 days of storage at 10C compared with control fruit. Vapor phase hydrogen peroxide reduced the decay of noninoculated `Thompson Seedless' and `Red Globe' grapes 73% and 28%, respectively, after 12 days of storage at 10C. Treatment with VPHP did not affect grape color or soluble solids content.


2000 ◽  
Vol 72 (7) ◽  
pp. 1289-1304 ◽  
Author(s):  
William R. Sanderson

Recent research progress in catalytic systems for potential use with hydrogen peroxide in industrial chemical synthesis is reviewed, with special focus on work published in the last five years. The main types of chemistry employed are critically appraised regarding their suitability for industrial exploitation. The most significant catalyst types are discussed in terms of the positive features identified to date, and the obstacles yet to be surmounted in order to become more widely adopted. It is believed that fully inorganic systems have more scope for commercialization than those containing organic ligands or supports, however robust. Critical targets are larger-pore analogs of titanium silicalite TS-1, more exploration of smectite-based materials, effective immobilization of activated metal peroxo systems, and improvements in design and manipulation of polyoxometallate compounds. Cooperation between branches of chemistry that have not traditionally worked closely together is advocated.


Author(s):  
Anastasiya Kutuzova ◽  
Tetiana Dontsova ◽  
Maryna Davydova

Antibiotics have been found in water bodies of different origin around the world, including natural waters. The presence of antibiotics in natural waters is already an important environmental problem, as they pose a potential threat to the environment. Analysis of the literature shows that photocatalytic methods are considered to be more promising than biological methods and adsorption processes for the treatment of water bodies contaminated with antibiotics and other pharmaceuticals. The aim of this study was to determine the efficiency of antibiotics removal (ciprofloxacin, sulfamethoxazole and trimethoprim) by photocatalytic methods over TiO2 photocatalyst modified with yttrium oxide. For this purpose, a commercial sample of TiO2 P25 (Evonik) was modified, which was further characterized by X-ray diffraction and X-ray fluorescence analysis methods. The obtained data indicate the presence of yttrium in commercial P25 sample after modification. Studies on the removal of antibiotics from aqueous solutions by photocatalytic methods were carried out in three ways: employing modified photocatalyst; combination of photocatalyst and hydrogen peroxide, and the combination of photocatalyst with hydrogen peroxide and ozone. The results of research demonstrate high efficiency of photocatalytic methods in the oxidation of antibiotics in aqueous solutions, among which the greatest oxidation is achieved using the combination of heterogeneous photocatalyst, hydrogen peroxide and ozone.


Sign in / Sign up

Export Citation Format

Share Document