The influence of albumin on adsorption of bacteria on hydroxyapatite beads in vitro and human tooth surfaces in vivo

1987 ◽  
Vol 32 (7) ◽  
pp. 531-533
Author(s):  
S. Yen ◽  
R.J. Gibbons
Keyword(s):  
2013 ◽  
Vol 23 ◽  
pp. 83-90
Author(s):  
Seung Han Oh ◽  
In Young Na ◽  
Kyoung Hee Choi

Although titanium dioxide (TiO2) is an implantable biomaterial with its antibacterial activity, infection on TiO2 surfaces remains a problem for medical settings. According to our previous studies, curcumin, the main component of turmeric (Curcuma longa), partially hindered the attachment of Streptococcus mutans to human tooth surfaces. Therefore, it was examined whether several implant device-associated bacteria were able to adhere to nanosized TiO2 surfaces. In addition, the effect of curcumin on the bacterial adhesion was investigated. Bacterial strains were cultured on pure Ti and TiO2 surfaces with various nanotube sizes in the absence or presence of curcumin and observed by scanning electron microscopy. Consequently, most bacteria adhered to Ti and TiO2 surfaces. However, curcumin increased the adhesion of bacteria including S. mutans. The results suggest that bacterial adhesion to implant titanium surfaces can be augmented via curcumin ingestion.


2012 ◽  
Vol 6 (1) ◽  
pp. 226-234 ◽  
Author(s):  
Daniela Guzmán-Uribe ◽  
Keila Neri Alvarado Estrada ◽  
Amaury de Jesús Pozos Guillén ◽  
Silvia Martín Pérez ◽  
Raúl Rosales Ibáñez

Application of regenerative medicine technology provides treatment for patients with several clinical problems, like loss of tissue and its function. The investigation of biological tooth replacement, dental tissue engineering and cell culture, scaffolds and growth factors are considered essential. Currently, studies reported on the making of threedimensional tissue constructs focused on the use of animal cells in the early stages of embryogenesis applied to young biomodels. The purpose of this study was the development and characterization of a three-dimensional tissue construct from human dental cells. The construct was detached, cultured and characterized in mesenchymal and epithelial cells of a human tooth germ of a 12 year old patient. The cells were characterized by specific membrane markers (STRO1, CD44), making a biocomplex using Pura Matrix as a scaffold, and it was incubated for four days and transplanted into 30 adult immunosuppressed male Wistar rats. They were evaluated at 6 days, 10 days and 2 months, obtaining histological sections stained with hematoxylin and eosin. Cell cultures were positive for specific membrane markers, showing evident deviations in morphology under phase contrast microscope. Differentiation and organization were noted at 10 days, while the constructs at 2 months showed a clear difference in morphology, organization and cell type. It was possible to obtain a three-dimensional tissue construct from human dental ectomesenchymal cells achieving a degree of tissue organization that corresponds to the presence of cellular stratification and extracellular matrix.


2019 ◽  
Vol 87 (12) ◽  
Author(s):  
Yongli Bi ◽  
Qingan Xu ◽  
Lingkai Su ◽  
Jiantao Xu ◽  
Zhongfang Liu ◽  
...  

ABSTRACT We previously demonstrated that recombinant protein PAc could be administered as an anticaries vaccine. However, the relatively weak immunogenicity of PAc limits its application. In the present study, we investigated the effect of two adjuvant combinations of chitosan plus Pam3CSK4 (chitosan-Pam3CSK4) and of chitosan plus monophosphoryl lipid A (chitosan-MPL) in the immune responses to the PAc protein in vivo and in vitro. PAc-chitosan-Pam3CSK4 or PAc-chitosan-MPL promoted significantly higher PAc-specific antibody titers in serum and saliva, inhibited Streptococcus mutans colonization onto the tooth surfaces, and endowed better protection effect with significantly less caries activities than PAc alone. Chitosan-Pam3CSK4 and chitosan-MPL showed no statistically significant differences. In conclusion, our study demonstrated that the chitosan-Pam3CSK4 and chitosan-MPL combinations are promising for anticaries vaccine development.


2006 ◽  
Vol 97 (4) ◽  
pp. 836-848 ◽  
Author(s):  
Vincenzo D'Antò ◽  
Monica Cantile ◽  
Maria D'Armiento ◽  
Giulia Schiavo ◽  
Gianrico Spagnuolo ◽  
...  

Author(s):  
R. S. Dwyer-Joyce ◽  
R. Lewis ◽  
M. Goodman

A reliable tool for assessing the extent of human enamel wear would be useful to dental practitioners. Current in-vivo methods for determining tooth wear are largely qualitative in nature or depend on measurements taken from tooth impressions, which is very time consuming. The aim of this work was to investigate the feasibility of using ultrasound to measure enamel thickness with a view to developing an in-vivo tool for enamel wear assessment. Three different ultrasonic techniques were used in-vitro to take measurements of enamel on extracted teeth. The first used a focusing immersion transducer (25 MHz) and a time of flight approach to obtain enamel thickness. The other two techniques used planar contact probes (10 MHz), the first with a time of flight approach and the second with a resonance method to determine enamel thickness. The results were compared with direct measurements of sectioned teeth. All three methods showed good correlation with these measurements. The contact probe technique was the easiest measurement to carry out, which would also be the simplest to implement in a measurement tool. While the resonance measurements obtained were good, the time of flight approach was thought to be most likely to obtain accurate repeatable measurements.


1999 ◽  
Vol 33 (5) ◽  
pp. 403-404 ◽  
Author(s):  
H.J. Busscher ◽  
A.F.J.M. Mulder ◽  
H.C. van der Mei

2018 ◽  
Vol 97 (10) ◽  
pp. 1137-1143 ◽  
Author(s):  
Y. Itoh ◽  
J.I. Sasaki ◽  
M. Hashimoto ◽  
C. Katata ◽  
M. Hayashi ◽  
...  

Dental pulp regeneration therapy for the pulpless tooth has attracted recent attention, and clinical trial studies are underway with the tissue engineering approach. However, there remain many concerns, including the extended period for regenerating the dental pulp. In addition, the use of scaffolds increases the risk of inflammation and infection. To establish a basic technology for novel dental pulp regenerative therapy that allows transplant of pulp-like tissue, we attempted to fabricate scaffold-free 3-dimensional (3D) cell constructs composed of dental pulp stem cells (DPSCs). Furthermore, we assessed viability of these 3D DPSC constructs for dental pulp regeneration through in vitro and in vivo studies. For the in vitro study, we obtained 3D DPSC constructs by shaping sheet-like aggregates of DPSCs with a thermoresponsive hydrogel. DPSCs within constructs remained viable even after prolonged culture; furthermore, 3D DPSC constructs possessed a self-organization ability necessary to serve as a transplant tissue. For the in vivo study, we filled the human tooth root canal with DPSC constructs and implanted it subcutaneously into immunodeficient mice. We found that pulp-like tissues with rich blood vessels were formed within the human root canal 6 wk after implantation. Histologic analyses revealed that transplanted DPSCs differentiated into odontoblast-like mineralizing cells at sites in contact with dentin; furthermore, human CD31–positive endothelial cells were found at the center of regenerated tissue. Thus, the self-organizing ability of 3D DPSC constructs was active within the pulpless root canal in vivo. In addition, blood vessel–rich pulp-like tissues can be formed with DPSCs without requiring scaffolds or growth factors. The technology established in this study allows us to prepare DPSC constructs with variable sizes and shapes; therefore, transplantation of DPSC constructs shows promise for regeneration of pulpal tissue in the pulpless tooth.


1998 ◽  
Vol 32 (6) ◽  
pp. 447-455 ◽  
Author(s):  
A. Carlén ◽  
A.-C. Börjesson ◽  
K. Nikdel ◽  
J. Olsson

2012 ◽  
Vol 24 (5) ◽  
pp. 1033-1038 ◽  
Author(s):  
Marcos Pita ◽  
Jan Halámek ◽  
Soujanya Chinnapareddy ◽  
Donald J. White ◽  
Vladimir Gartstein ◽  
...  

2021 ◽  
Vol 42 ◽  
pp. 232-245
Author(s):  
A Khadre ◽  
ELM Raif ◽  
S Junaid ◽  
OM Goudouri ◽  
W Refaat ◽  
...  

Due to the complexity of the structure of the tooth periodontium, regeneration of the full tooth attachment is not a trivial task. There is also a gap in models that can represent human tooth attachment in vitro and in vivo. The aim of this study was to develop a bilayered in vitro construct that simulated the tooth periodontal ligament and attached alveolar bone, for the purpose of tissue regeneration and investigation of physiological and orthodontic loading. Two types of materials were used to develop this construct: sol-gel 60S10Mg derived scaffold, representing the hard tissue component of the periodontium, and commercially available Geistlich Bio-Gide® collagen membrane, representing the soft tissue component of the tooth attachment. Each scaffold was dynamically seeded with human periodontal ligament cells (HPDLCs). Scaffolds were either cultured separately, or combined in a bilayered construct, for 2 weeks. Characterisation of the individual scaffolds and the bilayered constructs included biological characterisation (cell viability, scanning electron microscopy to confirm cell attachment, gene expression of periodontium regeneration markers), and mechanical characterisation of scaffolds and constructs. HPDLCs enjoyed a biocompatible 3-dimensional environment within the bilayered construct components. There was no drop in cellular gene expression in the bilayered construct, compared to the separate scaffolds.


Sign in / Sign up

Export Citation Format

Share Document