Infinite horizon backward stochastic differential equation and exponential convergence index assignment of stochastic control systems

Automatica ◽  
2002 ◽  
Vol 38 (8) ◽  
pp. 1417-1423 ◽  
Author(s):  
Yazeng Liu ◽  
Shige Peng
2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Xuejun Shi ◽  
Long Jiang ◽  
Ronglin Ji

We prove that a continuousg-supermartingale with uniformly continuous coeffcientgon finite or infinite horizon, is ag-supersolution of the corresponding backward stochastic differential equation. It is a new nonlinear Doob-Meyer decomposition theorem for theg-supermartingale with continuous trajectory.


2015 ◽  
Vol 5 (4) ◽  
pp. 387-404 ◽  
Author(s):  
Jie Yang ◽  
Weidong Zhao

AbstractConvergence analysis is presented for recently proposed multistep schemes, when applied to a special type of forward-backward stochastic differential equations (FB-SDEs) that arises in finance and stochastic control. The corresponding k-step scheme admits a k-order convergence rate in time, when the exact solution of the forward stochastic differential equation (SDE) is given. Our analysis assumes that the terminal conditions and the FBSDE coefficients are sufficiently regular.


2019 ◽  
Vol 25 ◽  
pp. 31 ◽  
Author(s):  
Fulvia Confortola ◽  
Andrea Cosso ◽  
Marco Fuhrman

We study an optimal control problem on infinite horizon for a controlled stochastic differential equation driven by Brownian motion, with a discounted reward functional. The equation may have memory or delay effects in the coefficients, both with respect to state and control, and the noise can be degenerate. We prove that the value, i.e. the supremum of the reward functional over all admissible controls, can be represented by the solution of an associated backward stochastic differential equation (BSDE) driven by the Brownian motion and an auxiliary independent Poisson process and having a sign constraint on jumps. In the Markovian case when the coefficients depend only on the present values of the state and the control, we prove that the BSDE can be used to construct the solution, in the sense of viscosity theory, to the corresponding Hamilton-Jacobi-Bellman partial differential equation of elliptic type on the whole space, so that it provides us with a Feynman-Kac representation in this fully nonlinear context. The method of proof consists in showing that the value of the original problem is the same as the value of an auxiliary optimal control problem (called randomized), where the control process is replaced by a fixed pure jump process and maximization is taken over a class of absolutely continuous changes of measures which affect the stochastic intensity of the jump process but leave the law of the driving Brownian motion unchanged.


2014 ◽  
Vol 15 (01) ◽  
pp. 1550002 ◽  
Author(s):  
Li-Shun Xiao ◽  
Sheng-Jun Fan ◽  
Na Xu

In this paper, we are interested in solving general time interval multidimensional backward stochastic differential equation in Lp (p ≥ 1). We first study the existence and uniqueness for Lp (p > 1) solutions by the method of convolution and weak convergence when the generator is monotonic in y and Lipschitz continuous in z both non-uniformly with respect to t. Then we obtain the existence and uniqueness for L1 solutions with an additional assumption that the generator has a sublinear growth in z non-uniformly with respect to t.


2020 ◽  
Vol 9 (2) ◽  
pp. 459-470
Author(s):  
Helin Wu ◽  
Yong Ren ◽  
Feng Hu

Abstract In this paper, we investigate some kind of Dynkin game under g-expectation induced by backward stochastic differential equation (short for BSDE). The lower and upper value functions $$\underline{V}_t=ess\sup \nolimits _{\tau \in {\mathcal {T}_t}} ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$ V ̲ t = e s s sup τ ∈ T t e s s inf σ ∈ T t E t g [ R ( τ , σ ) ] and $$\overline{V}_t=ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}} ess\sup \nolimits _{\tau \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$ V ¯ t = e s s inf σ ∈ T t e s s sup τ ∈ T t E t g [ R ( τ , σ ) ] are defined, respectively. Under some suitable assumptions, a pair of saddle points is obtained and the value function of Dynkin game $$V(t)=\underline{V}_t=\overline{V}_t$$ V ( t ) = V ̲ t = V ¯ t follows. Furthermore, we also consider the constrained case of Dynkin game.


2020 ◽  
Vol 28 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Mohamed El Jamali ◽  
Mohamed El Otmani

AbstractIn this paper, we study the solution of a backward stochastic differential equation driven by a Lévy process with one rcll reflecting barrier. We show the existence and uniqueness of a solution by means of the penalization method when the coefficient is stochastic Lipschitz. As an application, we give a fair price of an American option.


Sign in / Sign up

Export Citation Format

Share Document