Stimulation of sodium transport by aldosterone and arginine vasotocin in A6 cells

1988 ◽  
Vol 972 (3) ◽  
pp. 320-330 ◽  
Author(s):  
René J.M. Bindels ◽  
James A. Schafer ◽  
Max C. Reif
2004 ◽  
Vol 287 (2) ◽  
pp. F319-F328 ◽  
Author(s):  
Nicolas Markadieu ◽  
Daniel Blero ◽  
Alain Boom ◽  
Christophe Erneux ◽  
Renaud Beauwens

Insulin stimulates sodium transport across A6 epithelial cell monolayers. Activation of phosphatidylinositol 3-kinase (PI 3-kinase) was suggested as an early step in the insulin-stimulated sodium reabsorption (Ref. 35). To establish that the stimulation of the PI 3-kinase signaling cascade is causing stimulation of apical epithelial Na channel, we added permeant forms of phosphatidylinositol (PI) phosphate (P) derivatives complexed with a histone carrier to A6 epithelium. Only PIP3 and PI( 3 , 4 )P2 but not PI( 4 , 5 )P2 stimulated sodium transport, although each of them penetrated into A6 cell monolayers as assessed using fluorescent permeant phosphoinositides derivatives. By Western blot analysis of A6 cell extracts, the inositol 3-phosphatase PTEN and the protein kinase B PKB were both detected. To further establish that the stimulation of sodium transport induced by insulin is related to PIP3 levels, we transfected A6 cells with human PTEN cDNA and observed a 30% decrease in the natriferic effect of insulin. Similarly, the increase in sodium transport observed by addition of permeant PIP3 was also reduced by 30% in PTEN-overexpressing cells. PKB, a main downstream effector of PI 3-kinase, was phosphorylated at both Thr 308 and Ser 473 residues upon insulin stimulation of the A6 cell monolayer. PKB phosphorylation in response to insulin stimulation was reduced in PTEN-overexpressing cells. Permeant PIP3 also increased PKB phosphorylation. Taken together, the present results establish that the d-3-phosphorylated phosphoinositides PIP3 and PI( 3 , 4 )P2 mediate the effect of insulin on sodium transport across A6 cell monolayers.


1999 ◽  
Vol 277 (4) ◽  
pp. F575-F579 ◽  
Author(s):  
R. S. Edinger ◽  
M. D. Rokaw ◽  
J. P. Johnson

The enzyme phosphatidylinositide 3-kinase (PI3K) phosphorylates the D-3 position of the inositol ring of inositol phospholipids and produces 3-phosphorylated inositides. These novel second messengers are thought to mediate diverse cellular signaling functions. The fungal metabolite wortmannin covalently binds to PI3K and selectively inhibits its activity. The role of PI3K in basal and hormone-stimulated transepithelial sodium transport was examined using this specific inhibitor. Wortmannin, 50 nM, did not affect basal, aldosterone-stimulated, or insulin-stimulated transport in A6 cells. Wortmannin completely inhibits vasopressin stimulation of transport in these cells. Vasopressin stimulates PI3K activity in A6 cells. Vasopressin stimulation of transport is also blocked by 5 μM LY-294002, a second inhibitor of PI3K. One-hour preincubation with wortmannin blocked vasopressin stimulation of protein kinase A activity in the cells. Sodium transport responses to exogenous cAMP and forskolin, which directly activates adenylate cyclase, were not affected by wortmannin. These results indicate that wortmannin inhibits vasopressin stimulation of Na+transport at a site proximal to activation of adenylate cyclase. The results suggest that PI3K may be involved in receptor activation by vasopressin.


1995 ◽  
Vol 115 (2) ◽  
pp. 291-295 ◽  
Author(s):  
Tzong-Yang Tu ◽  
Claude Amiel ◽  
Patrice Tran Ba Huy ◽  
Philippe Herman

2005 ◽  
Vol 288 (1) ◽  
pp. C141-C147 ◽  
Author(s):  
Yu-Hua Zhang ◽  
Diego Alvarez de la Rosa ◽  
Cecilia M. Canessa ◽  
John P. Hayslett

The purpose of this study was to determine whether there is a correlation between phosphorylation and activity of the epithelial sodium channel (ENaC). The three subunits that form the channel were immunoprecipitated from A6 cells by using specific polyclonal antibodies after labeling cells with 35S or 32P. When immune complexes were resolved on SDS-PAGE, the α-subunit migrated at 85 and 65 kDa, the β-subunit at 115 and 100 kDa, and the γ-subunit at 90 kDa. In the resting state all three subunits were phosphorylated. The α-subunit was phosphorylated only in the 65-kDa band, suggesting that the posttranslational modification that gives rise to the rapidly migrating form of α is a requirement for phosphorylation. Stimulation with 100 nM insulin for 30 min increased phosphorylation of α-, β-, and γ-subunits approximately twofold. Exposure to 1 μM aldosterone for 16 h increased protein abundance and phosphorylation proportionately in the three subunits. When insulin was applied to cells pretreated with aldosterone, phosphorylation was also increased approximately twofold, but the total amount of phosphorylated substrate was larger than in control conditions because of the action of aldosterone. This result might explain the synergistic increase in sodium transport under the same conditions. The protein kinase C inhibitor chelerythrine abolished insulin effects and decreased sodium transport and subunit phosphorylation. Together, our findings suggest that ENaC activity is controlled by subunit phosphorylation in cells that endogenously express the channel and the machinery for hormonal stimulation of sodium transport.


1972 ◽  
Vol 223 (1) ◽  
pp. 104-109 ◽  
Author(s):  
SA Mendoza ◽  
F Murad ◽  
JS Handler ◽  
J Orloff

1993 ◽  
Vol 264 (3) ◽  
pp. F496-F501 ◽  
Author(s):  
J. S. Beck ◽  
A. M. Hurst ◽  
J. Y. Lapointe ◽  
R. Laprade

Potassium channel activity of the basolateral membrane of the collagenase-treated rabbit proximal convoluted tubule (PCT) was studied during continuous luminal microperfusion. In cell-attached patches (high-K pipette) an inwardly rectifying potassium channel was observed with an inward slope conductance of 60.8 +/- 3.3 pS (n = 12) and outward slope conductance of 17.1 +/- 2.7 pS (n = 6). Stimulation of transcellular sodium transport with luminal glucose and alanine increased channel activity [measured as single-channel open probability (NPo)] from 0.19 +/- 0.11 to 0.44 +/- 0.09 (n = 8). This increase in channel activity was not likely to be mediated by either cell depolarization or cell swelling, because channel activity was voltage insensitive over physiological potentials and because the channel was not activated by stretch. However, channel activity was pH sensitive; reducing luminal pH from 7.4 to 6.5 reduced NPo from 0.63 +/- 0.24 to 0.26 +/- 0.16 (n = 5). Our work demonstrates the feasibility of patch clamping the basolateral membrane of microperfused nephron segments. This has allowed us to follow the activity of this potassium channel during an increase in sodium transport and show that its activity does increase during this maneuver. We conclude that: 1) it is possible to patch clamp the basolateral membrane of microperfused nephron segments, and 2) basolateral membrane of the rabbit PCT contains an inwardly rectifying, pH-sensitive potassium channel. The behavior of this channel on stimulation of transcellular sodium transport could explain the macroscopic increase in basolateral potassium conductance observed under similar conditions.


1968 ◽  
Vol 51 (5) ◽  
pp. 290-302 ◽  
Author(s):  
José A. Zadunaisky ◽  
Joseph F. Gennaro ◽  
Nasser Bashirelahi ◽  
Mary Hilton

Sign in / Sign up

Export Citation Format

Share Document