scholarly journals Genetic evidence for the existence of two quinone related inhibitor binding sites in NADH-CoQ reductase

1997 ◽  
Vol 1319 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Elisabeth Darrouzet ◽  
Alain Dupuis
2019 ◽  
Author(s):  
Andrea N. Bootsma ◽  
Analise C. Doney ◽  
Steven Wheeler

<p>Despite the ubiquity of stacking interactions between heterocycles and aromatic amino acids in biological systems, our ability to predict their strength, even qualitatively, is limited. Based on rigorous <i>ab initio</i> data, we have devised a simple predictive model of the strength of stacking interactions between heterocycles commonly found in biologically active molecules and the amino acid side chains Phe, Tyr, and Trp. This model provides rapid predictions of the stacking ability of a given heterocycle based on readily-computed heterocycle descriptors. We show that the values of these descriptors, and therefore the strength of stacking interactions with aromatic amino acid side chains, follow simple predictable trends and can be modulated by changing the number and distribution of heteroatoms within the heterocycle. This provides a simple conceptual model for understanding stacking interactions in protein binding sites and optimizing inhibitor binding in drug design.</p>


2020 ◽  
Vol 20 (11) ◽  
pp. 1017-1030
Author(s):  
Haonan Zhang ◽  
Zhengquan Gao ◽  
Chunxiao Meng ◽  
Xiangqian Li ◽  
Dayong Shi

Protein tyrosine phosphatase 2 (SHP-2) has long been proposed as a cancer drug target. Several small-molecule compounds with different mechanisms of SHP-2 inhibition have been reported, but none are commercially available. Pool selectivity over protein tyrosine phosphatase 1 (SHP-1) and a lack of cellular activity have hindered the development of selective SHP-2 inhibitors. In this review, we describe the binding modes of existing inhibitors and SHP-2 binding sites, summarize the characteristics of the sites involved in selectivity, and identify the suitable groups for interaction with the binding sites.


Biochemistry ◽  
2011 ◽  
Vol 50 (35) ◽  
pp. 7684-7693 ◽  
Author(s):  
Edward B. Prage ◽  
Sven-Christian Pawelzik ◽  
Laura S. Busenlehner ◽  
Kwangho Kim ◽  
Ralf Morgenstern ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kangcheng Song ◽  
Miao Wei ◽  
Wenjun Guo ◽  
Li Quan ◽  
Yunlu Kang ◽  
...  

TRPC5 channel is a non-selective cation channel that participates diverse physiological processes. TRPC5 inhibitors show promise in the treatment of anxiety disorder, depression and kidney disease. However, the binding sites and inhibitory mechanism of TRPC5 inhibitors remain elusive. Here we present the cryo-EM structures of human TRPC5 in complex with two distinct inhibitors, namely clemizole and HC-070, to the resolution of 2.7 Å. The structures reveal that clemizole binds inside the voltage sensor-like domain of each subunit. In contrast, HC-070 is wedged between adjacent subunits and replaces the glycerol group of a putative DAG molecule near the extracellular side. Moreover, we found mutations in the inhibitor binding pockets altered the potency of inhibitors. These structures suggest that both clemizole and HC-070 exert the inhibitory functions by stabilizing the ion channel in a non-conductive closed state. These results pave the way for further design and optimization of inhibitors targeting human TRPC5.


2019 ◽  
Author(s):  
Andrea N. Bootsma ◽  
Analise C. Doney ◽  
Steven Wheeler

<p>Despite the ubiquity of stacking interactions between heterocycles and aromatic amino acids in biological systems, our ability to predict their strength, even qualitatively, is limited. Based on rigorous <i>ab initio</i> data, we have devised a simple predictive model of the strength of stacking interactions between heterocycles commonly found in biologically active molecules and the amino acid side chains Phe, Tyr, and Trp. This model provides rapid predictions of the stacking ability of a given heterocycle based on readily-computed heterocycle descriptors. We show that the values of these descriptors, and therefore the strength of stacking interactions with aromatic amino acid side chains, follow simple predictable trends and can be modulated by changing the number and distribution of heteroatoms within the heterocycle. This provides a simple conceptual model for understanding stacking interactions in protein binding sites and optimizing inhibitor binding in drug design.</p>


2007 ◽  
Vol 52 (3) ◽  
pp. 1133-1135 ◽  
Author(s):  
Fiona L. Henriquez ◽  
Paul R. Ingram ◽  
Stephen P. Muench ◽  
David W. Rice ◽  
Craig W. Roberts

ABSTRACT Tubulin is essential to eukaryotic cells and is targeted by several antineoplastics, herbicides, and antimicrobials. We demonstrate that Acanthamoeba spp. are resistant to five antimicrotubule compounds, unlike any other eukaryote studied so far. Resistance correlates with critical amino acid differences within the inhibitor binding sites of the tubulin heterodimers.


1983 ◽  
Vol 80 (11) ◽  
pp. 3158-3162 ◽  
Author(s):  
J. C. Faye ◽  
S. Jozan ◽  
G. Redeuilh ◽  
E. E. Baulieu ◽  
F. Bayard

Sign in / Sign up

Export Citation Format

Share Document