Diffusion-enhanced energy transfer shows accessibility of ribonucleic acid polymerase inhibitor binding sites

Biochemistry ◽  
1981 ◽  
Vol 20 (3) ◽  
pp. 610-617 ◽  
Author(s):  
Claude F. Meares ◽  
Lyle S. Rice
2019 ◽  
Author(s):  
Andrea N. Bootsma ◽  
Analise C. Doney ◽  
Steven Wheeler

<p>Despite the ubiquity of stacking interactions between heterocycles and aromatic amino acids in biological systems, our ability to predict their strength, even qualitatively, is limited. Based on rigorous <i>ab initio</i> data, we have devised a simple predictive model of the strength of stacking interactions between heterocycles commonly found in biologically active molecules and the amino acid side chains Phe, Tyr, and Trp. This model provides rapid predictions of the stacking ability of a given heterocycle based on readily-computed heterocycle descriptors. We show that the values of these descriptors, and therefore the strength of stacking interactions with aromatic amino acid side chains, follow simple predictable trends and can be modulated by changing the number and distribution of heteroatoms within the heterocycle. This provides a simple conceptual model for understanding stacking interactions in protein binding sites and optimizing inhibitor binding in drug design.</p>


2020 ◽  
Vol 20 (11) ◽  
pp. 1017-1030
Author(s):  
Haonan Zhang ◽  
Zhengquan Gao ◽  
Chunxiao Meng ◽  
Xiangqian Li ◽  
Dayong Shi

Protein tyrosine phosphatase 2 (SHP-2) has long been proposed as a cancer drug target. Several small-molecule compounds with different mechanisms of SHP-2 inhibition have been reported, but none are commercially available. Pool selectivity over protein tyrosine phosphatase 1 (SHP-1) and a lack of cellular activity have hindered the development of selective SHP-2 inhibitors. In this review, we describe the binding modes of existing inhibitors and SHP-2 binding sites, summarize the characteristics of the sites involved in selectivity, and identify the suitable groups for interaction with the binding sites.


1967 ◽  
Vol 27 (3) ◽  
pp. 421-430 ◽  
Author(s):  
Nicholas W. Seeds ◽  
James A. Retsema ◽  
Thomas W. Conway

Sign in / Sign up

Export Citation Format

Share Document