Ca2 Mobilization in Adult Rat Cardiomyocytes by Angiotensin Type 1 and 2 Receptors

1998 ◽  
Vol 55 (9) ◽  
pp. 1413-1418 ◽  
Author(s):  
Qiming Shao ◽  
Laura Saward ◽  
Peter Zahradka ◽  
Naranjan S Dhalla
Neuroscience ◽  
1997 ◽  
Vol 82 (3) ◽  
pp. 827-841 ◽  
Author(s):  
Z Lenkei ◽  
M Palkovits ◽  
P Corvol ◽  
C Llorens-Cortes

Author(s):  
Pablo Garrido-Gil ◽  
Ana I Rodriguez-Perez ◽  
Lucia Lage ◽  
Jose L Labandeira-Garcia

Abstract The physiopathological mechanisms that regulate menopausal and sex differences in colonic transit, inflammatory processes, and efficacy of treatments have not been clarified. The dopaminergic system and renin–angiotensin system coexist in the gut and regulate different processes such as motility, absorption/secretion, and inflammation. We investigated the changes in expression of major angiotensin and dopamine receptors in the colon of male, female, and ovariectomized female mice. Possible interaction between both systems was investigated using male and female mice deficient (ko) for major angiotensin and dopamine receptors. In wild-type mice, colonic tissue from females showed lower angiotensin type 1/angiotensin type 2 ratio (an index of pro-inflammatory/anti-inflammatory renin–angiotensin system balance), lower dopamine D1 and D2 receptor expression, and lower levels of pro-inflammatory and pro-oxidative markers relative to males. Interestingly, ovariectomy increased the expression of pro-inflammatory angiotensin type 1 receptor expression and decreased anti-inflammatory angiotensin type 2 receptor expression, increased D1 and D2 receptor expression, and increased the levels of pro-inflammatory and pro-oxidative markers. Ovariectomy-induced changes were blocked by estrogen replacement. The present results suggest a mutual regulation between colonic angiotensin and dopamine receptors and sex differences in this mutual regulation. Estrogen regulates changes in both angiotensin and dopamine receptor expression, which may be involved in sex- and surgical menopause-related effects on gut motility, permeability, and vulnerability to inflammatory processes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Guixi Mo ◽  
Xin Liu ◽  
Yiyue Zhong ◽  
Jian Mo ◽  
Zhiyi Li ◽  
...  

AbstractIntracellular ion channel inositol 1,4,5-triphosphate receptor (IP3R1) releases Ca2+ from endoplasmic reticulum. The disturbance of IP3R1 is related to several neurodegenerative diseases. This study investigated the mechanism of IP3R1 in myocardial ischemia/reperfusion (MI/R). After MI/R modeling, IP3R1 expression was silenced in myocardium of MI/R rats to explore its role in the concentration of myocardial enzymes, infarct area, Ca2+ level, NLRP3/Caspase-1, and pyroptosis markers and inflammatory factors. The adult rat cardiomyocytes were isolated and cultured to establish hypoxia/reperfusion (H/R) cell model. The expression of IP3R1 was downregulated or ERP44 was overexpressed in H/R-induced cells. Nifedipine D6 was added to H/R-induced cells to block Ca2+ channel or Nigericin was added to activate NLRP3. IP3R1 was highly expressed in myocardium of MI/R rats, and silencing IP3R1 alleviated MI/R injury, reduced Ca2+ overload, inflammation and pyroptosis in MI/R rats, and H/R-induced cells. The binding of ERP44 to IP3R1 inhibited Ca2+ overload, alleviated cardiomyocyte inflammation, and pyroptosis. The increase of intracellular Ca2+ level caused H/R-induced cardiomyocyte pyroptosis through the NLRP3/Caspase-1 pathway. Activation of NLRP3 pathway reversed the protection of IP3R1 inhibition/ERP44 overexpression/Nifedipine D6 on H/R-induced cells. Overall, ERP44 binding to IP3R1 inhibits Ca2+ overload, thus alleviating pyroptosis and MI/R injury.


1998 ◽  
Vol 93 (5) ◽  
pp. 391-395 ◽  
Author(s):  
M.C. Schaub ◽  
M.A. Hefti ◽  
B.A. Harder ◽  
H.M. Eppenberger

Sign in / Sign up

Export Citation Format

Share Document