Role of the M2 Subunit of Ribonucleotide Reductase in Regulation by Hydroxyurea of the Activity of the Anti-HIV-1 Agent 2′,3′-Dideoxyinosine

1998 ◽  
Vol 56 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Wen-Yi Gao ◽  
Bing-Sen Zhou ◽  
David G Johns ◽  
Hiroaki Mitsuya ◽  
Yun Yen
2020 ◽  
Vol 11 ◽  
Author(s):  
Wilfried Posch ◽  
Marta Bermejo-Jambrina ◽  
Cornelia Lass-Flörl ◽  
Doris Wilflingseder
Keyword(s):  
Anti Hiv ◽  

2008 ◽  
Vol 117 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Yuchang Li ◽  
Guanhua Li ◽  
Anna Ivanova ◽  
Sagiv Aaron ◽  
Malgorzata Simm

2004 ◽  
Vol 12 (02) ◽  
pp. 123-135 ◽  
Author(s):  
REBECCA V. CULSHAW

We present a review and comparison of several recent differential equations models of treatment of HIV-1 infection. We seek to clarify the role of the natural anti-HIV immune response and determine its effect upon optimal treatment schemes. In this paper, we consider systems in which treatment is expressed as a forcing function, as well as those in which we determine optimal treatment via control theoretic techniques. The primary goal of this study is to compare treatment schemes for systems in which a natural nonconstant immune response of the patient is considered explicitly with those that consider implicitly a constant non-specific immune response. We find that when the natural immune response can be boosted sufficiently, drug levels may not need to be as high as previously supposed. This implies that a treatment scenario in which intervals of drug treatment are alternated with some form of immune-boosting therapy may be highly beneficial in terms of reducing toxicity to the patient. Additionally, in developing countries where HIV infection is widespread and sufficient funds are not available to supply rigourous drug regimens, the implications of these models are profound, as they suggest methods of treating HIV at a minimal cost.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Joseph T. Ortega ◽  
Alirica I. Suárez ◽  
Maria L. Serrano ◽  
Jani Baptista ◽  
Flor H. Pujol ◽  
...  
Keyword(s):  
Anti Hiv ◽  

2018 ◽  
Vol 92 (17) ◽  
Author(s):  
Bin Xu ◽  
Qinghua Pan ◽  
Chen Liang

ABSTRACTType I interferon inhibits viruses through inducing the expression of antiviral proteins, including the myxovirus resistance (Mx) proteins. Compared to the human MxA protein, which inhibits a wide range of viruses, the MxB protein has been reported to specifically inhibit primate lentiviruses, including HIV-1, and herpesviruses. Further, the role of endogenous MxB in alpha interferon-mediated inhibition of HIV-1 infection was questioned by a recent study showing that MxB knockout did not increase the level of infection by HIV-1 which carried the G protein of vesicular stomatitis virus (VSV), allowing infection of CD4-negative HT1080 cells. In order to further examine the anti-HIV-1 activity of endogenous MxB, we have used CRISPR/Cas9 to deplete MxB in different cell lines and observed a substantial restoration of HIV-1 infection in the presence of alpha interferon treatment. However, this rescue effect of MxB knockout became much less pronounced when infection was performed with HIV-1 carrying the VSV G protein. Interestingly, a CRISPR/Cas9 knockout screen of alpha interferon-stimulated genes in U87-MG cells revealed that the genes for interferon-induced transmembrane protein 2 (IFITM2) and IFITM3 inhibited VSV G-pseudotyped HIV-1 much more strongly than the rest of the genes tested, including the gene for MxB. Therefore, our results demonstrate the importance of MxB in alpha interferon-mediated inhibition of HIV-1 infection, which, however, can be underestimated if infection is performed with VSV G protein-pseudotyped HIV-1, due to the high sensitivity of VSV G-mediated infection to inhibition by IFITM proteins.IMPORTANCEThe results of this study reconcile the controversial reports regarding the anti-HIV-1 function of alpha interferon-induced MxB protein. In addition to the different cell types that may have contributed to the different observations, our data also suggest that VSV G protein-pseudotyped HIV-1 is much less inhibited by alpha interferon-induced MxB than HIV-1 itself is. Our results clearly demonstrate an important contribution of MxB to alpha interferon-mediated inhibition of HIV-1 in CD4+T cells, which calls for using HIV-1 target cells and wild-type virus to test the relevance of the anti-HIV-1 activity of endogenous MxB and other restriction factors.


2005 ◽  
Vol 115 (3) ◽  
pp. 765-773 ◽  
Author(s):  
Theresa L. Chang ◽  
Jesus Vargas ◽  
Armando DelPortillo ◽  
Mary E. Klotman
Keyword(s):  
Anti Hiv ◽  

2020 ◽  
Vol 8 (10) ◽  
pp. 1490
Author(s):  
Rebekah Sherburn ◽  
William D. Tolbert ◽  
Suneetha Gottumukkala ◽  
Guillaume Beaudoin-Bussières ◽  
Andrés Finzi ◽  
...  

Fc-mediated effector functions of antibodies, including antibody-dependent cytotoxicity (ADCC), have been shown to contribute to vaccine-induced protection from HIV-1 infection, especially those directed against non-neutralizing, CD4 inducible (CD4i) epitopes within the gp120 constant 1 and 2 regions (C1/C2 or Cluster A epitopes). However, recent passive immunization studies have not been able to definitively confirm roles for these antibodies in HIV-1 prevention mostly due to the complications of cross-species Fc–FcR interactions and suboptimal dosing strategies. Here, we use our stabilized gp120 Inner domain (ID2) immunogen that displays the Cluster A epitopes within a minimal structural unit of HIV-1 Env to investigate an immunization protocol that induces a fine-tuned antibody repertoire capable of an effective Fc-effector response. This includes the generation of isotypes and the enhanced antibody specificity known to be vital for maximal Fc-effector activities, while minimizing the induction of isotypes know to be detrimental for these functions. Although our studies were done in in BALB/c mice we conclude that when optimally titrated for the species of interest, ID2 with GLA-SE adjuvant will elicit high titers of antibodies targeting the Cluster A region with potent Fc-mediated effector functions, making it a valuable immunogen candidate for testing an exclusive role of non-neutralizing antibody response in HIV-1 protection in vaccine settings.


Sign in / Sign up

Export Citation Format

Share Document