scholarly journals Mechanism of Inactivation Gating of Human T-Type (Low-Voltage Activated) Calcium Channels

2002 ◽  
Vol 82 (4) ◽  
pp. 1894-1906 ◽  
Author(s):  
Don E. Burgess ◽  
Oscar Crawford ◽  
Brian P. Delisle ◽  
Jonathan Satin
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Vendula Ficelova ◽  
Ivana A. Souza ◽  
Leos Cmarko ◽  
Maria A. Gandini ◽  
Robin N. Stringer ◽  
...  

Abstract Low-voltage-activated T-type calcium channels are important contributors to nervous system function. Post-translational modification of these channels has emerged as an important mechanism to control channel activity. Previous studies have documented the importance of asparagine (N)-linked glycosylation and identified several asparagine residues within the canonical consensus sequence N-X-S/T that is essential for the expression and function of Cav3.2 channels. Here, we explored the functional role of non-canonical N-glycosylation motifs in the conformation N-X-C based on site directed mutagenesis. Using a combination of electrophysiological recordings and surface biotinylation assays, we show that asparagines N345 and N1780 located in the motifs NVC and NPC, respectively, are essential for the expression of the human Cav3.2 channel in the plasma membrane. Therefore, these newly identified asparagine residues within non-canonical motifs add to those previously reported in canonical sites and suggest that N-glycosylation of Cav3.2 may also occur at non-canonical motifs to control expression of the channel in the plasma membrane. It is also the first study to report the functional importance of non-canonical N-glycosylation motifs in an ion channel.


2003 ◽  
Vol 53 (3) ◽  
pp. 165-172 ◽  
Author(s):  
Toshihiko Kaku ◽  
Tae-Seong Lee ◽  
Makoto Arita ◽  
Tetsuo Hadama ◽  
Katsushige Ono
Keyword(s):  

1997 ◽  
Vol 77 (4) ◽  
pp. 1795-1812 ◽  
Author(s):  
Jesper Tegnér ◽  
Jeanette Hellgren-Kotaleski ◽  
Anders Lansner ◽  
Sten Grillner

Tegnér, Jesper, Jeanette Hellgren-Kotaleski, Anders Lansner, and Sten Grillner. Low-voltage-activated calcium channels in the lamprey locomotor network: simulation and experiment. J. Neurophysiol. 77: 1795–1812, 1997. To evaluate the role of low-voltage-activated (LVA) calcium channels in the lamprey spinal locomotor network, a previous computer simulation model has been extended to include LVA calcium channels. It is also of interest to explore the consequences of a LVA conductance for the electrical behavior of the single neuron. The LVA calcium channel was modeled with voltage-dependent activation and inactivation using the m 3 h form, following a Hodgkin-Huxley paradigm. Experimental data from lamprey neurons was used to provide parameter values of the single cell model. The presence of a LVA calcium conductance in the model could account for the occurrence of a rebound depolarization in the simulation model. The influence of holding potential on the occurrence of a rebound as well the latency at which it is elicited was investigated and compared with previous experiments. The probability of a rebound increased at a more depolarized holding potential and the latency was also reduced under these conditions. Furthermore, the effect of changing the holding potential and the reversal potential of the calcium dependent potassium conductance were tested to determine under which conditions several rebound spikes could be elicited after a single inhibitory pulse in the simulation model. A reduction of the slow afterhyperpolarization (sAHP) after the action potential reduced the tendency for a train of rebound spikes. The experimental effects of γ-aminobutyric acid-B(GABAB) receptor activation were simulated by reducing the maximal LVA calcium conductance. A reduced tendency for rebound firing and a slower rising phase with sinusoidal current stimulation was observed, in accordance with earlier experiments. The effect of reducing the slow afterhyperpolarization and reducing the LVA calcium current was tested experimentally in the lamprey spinal cord, during N-methyl-d-aspartate (NMDA)-induced fictive locomotion. The reduction of burst frequency was more pronounced with GABAB agonists than with apamin (inhibitor of K(Ca) current) when using high NMDA concentration (high burst frequency). The burst frequency increased after the addition of a LVA calcium current to the simulated segmental network, due to a faster recovery during the inhibitory phase as the activity switches between the sides. This result is consistent with earlier experimental findings because GABAB receptor agonists reduce the locomotor frequency. These results taken together suggest that the LVA calcium channels contribute to a larger degree with respect to the burst frequency regulation than the sAHP mechanism at higher burst frequencies. The range in which a regular burst pattern can be simulated is extended in the lower range by the addition of LVA calcium channels, which leads to more stable activity at low locomotor frequencies. We conclude that the present model can account for rebound firing and trains of rebound spikes in lamprey neurons. The effects of GABAB receptor activation on the network level is consistent with a reduction of the calcium current through LVA calcium channels even though GABAB receptor activation will affect the sAHP indirectly and also presynaptic inhibition.


2004 ◽  
Vol 92 (5) ◽  
pp. 2633-2641 ◽  
Author(s):  
Diane Lipscombe ◽  
Thomas D. Helton ◽  
Weifeng Xu

L-type calcium channels couple membrane depolarization in neurons to numerous processes including gene expression, synaptic efficacy, and cell survival. To establish the contribution of L-type calcium channels to various signaling cascades, investigators have relied on their unique pharmacological sensitivity to dihydropyridines. The traditional view of dihydropyridine-sensitive L-type calcium channels is that they are high-voltage–activating and have slow activation kinetics. These properties limit the involvement of L-type calcium channels to neuronal functions triggered by strong and sustained depolarizations. This review highlights literature, both long-standing and recent, that points to significant functional diversity among L-type calcium channels expressed in neurons and other excitable cells. Past literature contains several reports of low-voltage–activated neuronal L-type calcium channels that parallel the unique properties of recently cloned CaV1.3 L-type channels. The fast kinetics and low activation thresholds of CaV1.3 channels stand in stark contrast to criteria currently used to describe L-type calcium channels. A more accurate view of neuronal L-type calcium channels encompasses a broad range of activation thresholds and recognizes their potential contribution to signaling cascades triggered by subthreshold depolarizations.


PLoS ONE ◽  
2008 ◽  
Vol 3 (8) ◽  
pp. e2976 ◽  
Author(s):  
Joel P. Baumgart ◽  
Iuliia Vitko ◽  
Isabelle Bidaud ◽  
Artem Kondratskyi ◽  
Philippe Lory ◽  
...  

2003 ◽  
Vol 35 (6) ◽  
pp. 533-575 ◽  
Author(s):  
Anne Marie R. Yunker ◽  
Maureen W. McEnery
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document