nervous system function
Recently Published Documents


TOTAL DOCUMENTS

631
(FIVE YEARS 132)

H-INDEX

56
(FIVE YEARS 7)

2022 ◽  
Vol 15 ◽  
Author(s):  
Krissy A. Lyon ◽  
Nicola J. Allen

Astrocytes are non-neuronal cells that regulate synapses, neuronal circuits, and behavior. Astrocytes ensheath neuronal synapses to form the tripartite synapse where astrocytes influence synapse formation, function, and plasticity. Beyond the synapse, recent research has revealed that astrocyte influences on the nervous system extend to the modulation of neuronal circuitry and behavior. Here we review recent findings on the active role of astrocytes in behavioral modulation with a focus on in vivo studies, primarily in mice. Using tools to acutely manipulate astrocytes, such as optogenetics or chemogenetics, studies reviewed here have demonstrated a causal role for astrocytes in sleep, memory, sensorimotor behaviors, feeding, fear, anxiety, and cognitive processes like attention and behavioral flexibility. Current tools and future directions for astrocyte-specific manipulation, including methods for probing astrocyte heterogeneity, are discussed. Understanding the contribution of astrocytes to neuronal circuit activity and organismal behavior will be critical toward understanding how nervous system function gives rise to behavior.


2021 ◽  
Vol 14 ◽  
Author(s):  
Umer Saleem Bhat ◽  
Navneet Shahi ◽  
Siju Surendran ◽  
Kavita Babu

One of the reasons that most multicellular animals survive and thrive is because of the adaptable and plastic nature of their nervous systems. For an organism to survive, it is essential for the animal to respond and adapt to environmental changes. This is achieved by sensing external cues and translating them into behaviors through changes in synaptic activity. The nervous system plays a crucial role in constantly evaluating environmental cues and allowing for behavioral plasticity in the organism. Multiple neurotransmitters and neuropeptides have been implicated as key players for integrating sensory information to produce the desired output. Because of its simple nervous system and well-established neuronal connectome, C. elegans acts as an excellent model to understand the mechanisms underlying behavioral plasticity. Here, we critically review how neuropeptides modulate a wide range of behaviors by allowing for changes in neuronal and synaptic signaling. This review will have a specific focus on feeding, mating, sleep, addiction, learning and locomotory behaviors in C. elegans. With a view to understand evolutionary relationships, we explore the functions and associated pathophysiology of C. elegans neuropeptides that are conserved across different phyla. Further, we discuss the mechanisms of neuropeptidergic signaling and how these signals are regulated in different behaviors. Finally, we attempt to provide insight into developing potential therapeutics for neuropeptide-related disorders.


2021 ◽  
Vol 14 ◽  
Author(s):  
Jacob B. Ruden ◽  
Mrinalini Dixit ◽  
José C. Zepeda ◽  
Brad A. Grueter ◽  
Laura L. Dugan

N-methyl-D-aspartate (NMDA) receptors are critical for higher-order nervous system function, but in previously published protocols to convert human induced pluripotent stem cells (iPSCs) to mature neurons, functional NMDA receptors (NMDARs) are often either not reported or take an extended time to develop. Here, we describe a protocol to convert human iPSC-derived neural progenitor cells (NPCs) to mature neurons in only 37 days. We demonstrate that the mature neurons express functional NMDARs exhibiting ligand-activated calcium flux, and we document the presence of NMDAR-mediated electrically evoked postsynaptic current. In addition to being more rapid than previous procedures, our protocol is straightforward, does not produce organoids which are difficult to image, and does not involve co-culture with rodent astrocytes. This could enhance our ability to study primate/human-specific aspects of NMDAR function and signaling in health and disease.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009877
Author(s):  
Alexander T. Lin-Moore ◽  
Motunrayo J. Oyeyemi ◽  
Marc Hammarlund

Injured axons must regenerate to restore nervous system function, and regeneration is regulated in part by external factors from non-neuronal tissues. Many of these extrinsic factors act in the immediate cellular environment of the axon to promote or restrict regeneration, but the existence of long-distance signals regulating axon regeneration has not been clear. Here we show that the Rab GTPase rab-27 inhibits regeneration of GABAergic motor neurons in C. elegans through activity in the intestine. Re-expression of RAB-27, but not the closely related RAB-3, in the intestine of rab-27 mutant animals is sufficient to rescue normal regeneration. Several additional components of an intestinal neuropeptide secretion pathway also inhibit axon regeneration, including NPDC1/cab-1, SNAP25/aex-4, KPC3/aex-5, and the neuropeptide NLP-40, and re-expression of these genes in the intestine of mutant animals is sufficient to restore normal regeneration success. Additionally, NPDC1/cab-1 and SNAP25/aex-4 genetically interact with rab-27 in the context of axon regeneration inhibition. Together these data indicate that RAB-27-dependent neuropeptide secretion from the intestine inhibits axon regeneration, and point to distal tissues as potent extrinsic regulators of regeneration.


Author(s):  
Benjamin A. Kelvington ◽  
Thomas Nickl-Jockschat ◽  
Ted Abel

Twice-exceptional learners face a unique set of challenges arising from the intersection of extraordinary talent and disability. Neurobiology research has the capacity to complement pedagogical research and provide support for twice-exceptional learners. Very few studies have attempted to specifically address the neurobiological underpinnings of twice-exceptionality. However, neurobiologists have built a broad base of knowledge in nervous system function spanning from the level of neural circuits to the molecular basis of behavior. It is known that distinct neural circuits mediate different neural functions, which suggests that 2e learning may result from enhancement in one circuit and disruption in another. Neural circuits are known to adapt and change in response to experience, a cellular process known as neuroplasticity. Plasticity is controlled by a bidirectional connection between the synapse, where neural signals are received, and the nucleus, where regulated gene expression can return to alter synaptic function. Complex molecular mechanisms compose this connection in distinct neural circuits, and genetic alterations in these mechanisms are associated with both memory enhancements and psychiatric disorder. Understanding the consequences of these changes at the molecular, cellular, and circuit levels will provide critical insights into the neurobiological bases of twice-exceptional learning.


Author(s):  
Zoe M. Jenkins ◽  
David J. Castle ◽  
Nina Eikelis ◽  
Andrea Phillipou ◽  
Gavin W. Lambert ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicole Pogodalla ◽  
Holger Kranenburg ◽  
Simone Rey ◽  
Silke Rodrigues ◽  
Albert Cardona ◽  
...  

AbstractIn the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function.


Sign in / Sign up

Export Citation Format

Share Document