Optical responses evoked by single-pulse stimulation to the dorsal root in the rat spinal dorsal horn in slice

1998 ◽  
Vol 812 (1-2) ◽  
pp. 81-90 ◽  
Author(s):  
Hiroshi Ikeda ◽  
Pan-Dong Ryu ◽  
Jin-Bong Park ◽  
Manabu Tanifuji ◽  
Tatsuya Asai ◽  
...  
2016 ◽  
Vol 10 (1) ◽  
pp. 90-102 ◽  
Author(s):  
Mienke Rijsdijk ◽  
Camilla I Svensson ◽  
Albert J van Wijck ◽  
Cornelis J Kalkman ◽  
Tony L Yaksh

AbstractBackground and aimGlucocorticoids, a group of anti-inflammatory agents, are frequently administered in pain medicine. Of interest is the reported activity after intrathecal delivery in patients with neuropathic pain syndromes such as postherpetic neuralgia, though its efficacy is controversial. After the publication of two randomized clinical trials in postherpetic neuralgia patients treated with similar intrathecal methylprednisolone acetate (MPA) dosing regimes with conflicting results; one showing significant pain reduction (Kotani N, Kushikata T, Hashimoto H, Kimura F, Muraoka M, Yodono M, Asai M, Matsuki A: Intrathecal methylprednisolone for intractable postherpetic neuralgia. N Engl J Med 2000;23: 1514–9), the other increased pain sensations (Rijsdijk M, van Wijck AJ, Meulenhoff PC, Kavelaars A, van der Tweel I, Kalkman CJ: No beneficial effect of intrathecal methylprednisolone acetate in postherpetic neuralgia patients. Eur J Pain 2013;38:175–200), we decided additional research was warranted. Present study sought to determine effects of intrathecally delivered methylprednisolone on pain-like behaviour and pain-associated markers in three well established rodent pain models: (1) intraplantar carrageenan, (2) intraplantar formalin, and (3) ligation of L5/L6 spinal nerves (SNL model).MethodsMale rats with intrathecal catheters were examined for (1) tactile allodynia after unilateral hindpaw intraplantar carrageenan injection (2%), (2) flinching and subsequent long term tactile allodynia after unilateral hindpaw intraplantar formalin injection (2.5%) or (3) tactile allodynia after unilateral ligation of the L5 and L6 spinal nerves. Rats were treated with the maximum tolerable intrathecal dose of the soluble methylprednisolone sodium succinate (MP) or the particulate methylprednisolone acetate (MPA). Dorsal root ganglia and spinal cords were harvested for immunohistochemistry to assess markers of neuronal damage (ATF3) and glial activation (GFAP, Iba1).ResultsDuring dose finding, severe generalized allodynia was observed with high intrathecal doses of both MPA and MP in naive rats. MPA had no effect upon tactile allodynia after carrageenan. MP and MPA did not reverse tactile allodynia in the SNL model, and did not reduce flinching in the formalin model. MP and MPA prevented the delayed (7–day) tactile allodynia otherwise observed in the formalin-injected paw. Systemic MP or perineural MP or MPA did not reduce pain-like behaviour in the SNL model. No reduction of neuronal injury (ATF3) in the dorsal root ganglion or astrocyte activation (GFAP) in the spinal dorsal horn with intrathecal MP or MPA was observed. There was a decrease in microglial activation (Iba1) in the spinal dorsal horn with MPA after SNL.ConclusionSevere generalized allodynia was observed after high intrathecal doses of MP and MPA in naive rats. No acute analgesic effects with intrathecal glucocorticoids were observed in three well established pain models. Only a late antiallodynic effect was present in the formalin model, 7 days after formalin injection and drug treatment.ImplicationsOur results do not support use of intrathecal methylprednisolone in the treatment of pain.


2013 ◽  
Vol 19 (2) ◽  
pp. 256-263 ◽  
Author(s):  
Hee Kyung Cho ◽  
Yun Woo Cho ◽  
Eun Hyuk Kim ◽  
Menno E. Sluijter ◽  
Se Jin Hwang ◽  
...  

Object Herniated discs can induce sciatica by mechanical compression and/or chemical irritation caused by proinflammatory cytokines. Using immunohistochemistry methods in the dorsal horn of a rat model of lumbar disc herniation, the authors investigated the effects of pulsed radiofrequency (PRF) current administration to the dorsal root ganglion (DRG) on pain-related behavior and activation of microglia, astrocytes, and mitogen-activated protein kinase. Methods A total of 33 Sprague-Dawley rats were randomly assigned to either a sham-operated group (n = 10) or a nucleus pulposus (NP)–exposed group (n = 23). Rats in the NP-exposed group were further subdivided into NP exposed with sham stimulation (NP+sham stimulation, n = 10), NP exposed with PRF (NP+PRF, n = 10), or euthanasia 10 days after NP exposure (n = 3). The DRGs in the NP+PRF rats were exposed to PRF waves (2 Hz) for 120 seconds at 45 V on postoperative Day 10. Rats were tested for mechanical allodynia 10 days after surgery and at 8 hours, 1 day, 3 days, 10 days, 20 days, and 40 days after PRF administration. Immunohistochemical staining of astrocytes (glial fibrillary acidic protein), microglia (OX-42), and phosphorylated extracellular signal–regulated kinases (pERKs) in the spinal dorsal horn was performed at 41 days after PRF administration. Results Starting at 8 hours after PRF administration, mechanical withdrawal thresholds dramatically increased; this response persisted for 40 days (p < 0.05). After PRF administration, immunohistochemical expressions of OX-42 and pERK in the spinal dorsal horn were quantitatively reduced (p < 0.05). Conclusions Pulsed radiofrequency administration to the DRG reduced mechanical allodynia and downregulated microglia activity and pERK expression in the spinal dorsal horn of a rat model of lumbar disc herniation.


Sign in / Sign up

Export Citation Format

Share Document