Morphological characteristics and electrophysiological responses of visceral nociceptive neurons in somatosensory cerebral cortex of cat

1999 ◽  
Vol 846 (2) ◽  
pp. 243-252 ◽  
Author(s):  
Chen Jinghong ◽  
Teng Guoxi
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gábor Remzső ◽  
János Németh ◽  
Valéria Tóth-Szűki ◽  
Viktória Varga ◽  
Viktória Kovács ◽  
...  

AbstractCortical spreading depolarization (SD) involves activation of NMDA receptors and elicit neurovascular unit dysfunction. NMDA cannot trigger SD in newborns, thus its effect on neurovascular function is not confounded by other aspects of SD. The present study investigated if NMDA affected hypercapnia-induced microvascular and electrophysiological responses in the cerebral cortex of newborn pigs. Anesthetized piglets were fitted with cranial windows over the parietal cortex to study hemodynamic and electrophysiological responses to graded hypercapnia before/after topically applied NMDA assessed with laser-speckle contrast imaging and recording of local field potentials (LFP)/neuronal firing, respectively. NMDA increased cortical blood flow (CoBF), suppressed LFP power in most frequency bands but evoked a 2.5 Hz δ oscillation. The CoBF response to hypercapnia was abolished after NMDA and the hypercapnia-induced biphasic changes in δ and θ LFP power were also altered. MK-801 prevented NMDA-induced increases in CoBF and the attenuation of microvascular reactivity to hypercapnia. The neuronal nitric oxide synthase (nNOS) inhibitor (N-(4 S)-4-amino-5-[aminoethyl]aminopentyl-N′-nitroguanidin) also significantly preserved the CoBF response to hypercapnia after NMDA, although it didn’t reduce NMDA-induced increases in CoBF. In conclusion, excess activation of NMDA receptors alone can elicit SD-like neurovascular unit dysfunction involving nNOS activity.


2020 ◽  
Author(s):  
Suzana Herculano‐Houzel ◽  
Felipe Barros Cunha ◽  
Jamie L. Reed ◽  
Consolate Kaswera‐Kyamakya ◽  
Emmanuel Gillissen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document