Barley β-d-glucan exohydrolases. Substrate specificity and kinetic properties

1997 ◽  
Vol 305 (2) ◽  
pp. 209-221 ◽  
Author(s):  
Maria Hrmova ◽  
Geoffrey B. Fincher
Biochemistry ◽  
2016 ◽  
Vol 55 (38) ◽  
pp. 5453-5463 ◽  
Author(s):  
Juliana B. Coitinho ◽  
Mozart S. Pereira ◽  
Débora M. A. Costa ◽  
Samuel L. Guimarães ◽  
Simara S. Araújo ◽  
...  

2008 ◽  
Vol 28 (4) ◽  
pp. 205-215 ◽  
Author(s):  
Qian Han ◽  
Tao Cai ◽  
Danilo A. Tagle ◽  
Howard Robinson ◽  
Jianyong Li

KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to α-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested α-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with α-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15–33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.


Author(s):  
Tao Wang ◽  
Hao Shi ◽  
William B. Whitman

The acyl-CoA dehydrogenase family enzyme DmdC catalyzes the third step in the dimethylsulfoniopropionate (DMSP) demethylation pathway, the oxidation of 3-methylmercaptopropionyl-CoA (MMPA-CoA) to 3-methylthioacryloyl-CoA (MTA-CoA). To study its substrate specificity, the recombinant DmdC1 from Ruegeria pomeroyi was characterized. In addition to MMPA-CoA, the enzyme was highly active with short chain acyl-CoAs, with K m values for MMPA-CoA, butyryl-CoA, valeryl-CoA, caproyl-CoA, heptanoyl-CoA, caprylyl-CoA and isobutyryl-CoA of 36, 19, 7, 11, 14, 10, and 149 μM, respectively, and k cat values of 1.48, 0.40, 0.48, 0.73, 0.46, 0.23 and 0.01 sec −1 , respectively. Among these compounds, MMPA-CoA was the best substrate. The high affinity of DmdC1 for its substrate supports the model for kinetic regulation of the demethylation pathway. In contrast to DmdB, which catalyzes the formation of MMPA-CoA from MMPA, CoA and ATP, DmdC1 was not affected by physiological concentrations of potential effectors, such as DMSP, MMPA, ATP and ADP. Thus, compared to the other enzymes of the DMSP demethylation pathway, DmdC1 has only minimal adaptations for DMSP metabolism compared to other enzymes in the same family with similar substrates, supporting the hypothesis that it evolved relatively recently from a short chain acyl-CoA dehydrogenase involved in fatty acid oxidation. Importance We report the kinetic properties of DmdC1 from the model organism R. pomeroyi and close an important gap in the literature. While the crystal structure of this enzyme was recently solved and its mechanism of action described (X. Shao, H. Y. Cao, F. Zhao, M. Peng, et al., Mol Microbiol 111:1057-1073, 2019, https://doi.org/10.1111/mmi.14211 ), its substrate specificity and sensitivity to potential effectors was never examined. We show that DmdC1 has a high affinity for other short chain acyl-CoAs in addition to MMPA-CoA, which is the natural substrate in DMSP metabolism and is not affected by the potential effectors tested. This evidence supports the hypothesis that DmdC1 possesses few adaptations to DMSP metabolism and likely evolved relatively recently from a short chain acyl-CoA dehydrogenase involved in fatty acid oxidation. This work is important because it expands our understanding about the adaptation of marine bacteria to the increased availability of DMSP about 250 million years ago.


2000 ◽  
Vol 105 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Helga Kroschewski ◽  
Stephan Ortner ◽  
Boris Steipe ◽  
Otto Scheiner ◽  
Gerhard Wiedermann ◽  
...  

Author(s):  
Masakazu Niimi ◽  
Kyoko Niimi ◽  
Koichi Tanabe ◽  
Richard D. Cannon ◽  
Erwin Lamping

Overexpression of ATP-binding cassette (ABC) transporters is a major cause of drug resistance in fungal pathogens. Milbemycins, enniatin B, beauvericin and FK506 are promising leads for broad-spectrum fungal multidrug efflux pump inhibitors. The characterization of naturally generated inhibitor resistant mutants is a powerful tool to elucidate structure-activity relationships in ABC transporters. We isolated twenty Saccharomyces cerevisiae mutants overexpressing Candida albicans ABC pump Cdr1 variants resistant to fluconazole efflux inhibition by milbemycin α25 (eight mutants), enniatin B (eight) or beauvericin (four). The twenty mutations were in just nine residues at the centres of transmembrane segment 1 (TMS1) (six mutations), TMS4 (four), TMS5 (four), TMS8 (one) and TMS11 (two) and in A713P (three), a previously reported FK506-resistant ‘hotspot 1’ mutation in extracellular loop 3. Six Cdr1-G521S/C/V/R (TMS1) variants were resistant to all four inhibitors, four Cdr1-M639I (TMS4) isolates were resistant to milbemycin α25 and enniatin B, and two Cdr1-V668I/D (TMS5) variants were resistant to enniatin B and beauvericin. The eight milbemycin α25 resistant mutants were altered in four amino acids: G521R, M639I, A713P and T1355N. These four Cdr1 variants responded differently to various types of inhibitors, and each exhibited altered substrate specificity and kinetic properties. The data infer an entry gate function for Cdr1-G521 and a role for Cdr1-A713 in the constitutively high Cdr1 ATPase activity. Cdr1-M639I and -T1355N (TMS11) possibly cause inhibitor-resistance by altering TMS-contacts near the substrate/inhibitor-binding pocket. Models for the interactions of substrates and different types of inhibitors with Cdr1 at various stages of the transport cycle are presented.


Sign in / Sign up

Export Citation Format

Share Document