Characterization of the active site, substrate specificity and kinetic properties of acetyl-CoA:Arylamine N-acetyltransferase from pigeon liver

Author(s):  
Herbert H. Andres ◽  
Helmut J. Kolb ◽  
Rolf J. Schreiber ◽  
Ludwig Weiss
2006 ◽  
Vol 34 (1) ◽  
pp. 143-145 ◽  
Author(s):  
T.A. Clarke ◽  
A.M. Hemmings ◽  
B. Burlat ◽  
J.N. Butt ◽  
J.A. Cole ◽  
...  

The recent crystallographic characterization of NrfAs from Sulfurospirillum deleyianum, Wolinella succinogenes, Escherichia coli and Desulfovibrio desulfuricans allows structurally conserved regions to be identified. Comparison of nitrite and sulphite reductase activities from different bacteria shows that the relative activities vary according to organism. By comparison of both amino acid sequences and structures, differences can be identified in the monomer–monomer interface and the active-site channel; these differences could be responsible for the observed variance in substrate activity and indicate that subtle changes in the NrfA structure may optimize the enzyme for different roles.


Author(s):  
Liam A. Wilson ◽  
Esmée G. Knaven ◽  
Marc T. Morris ◽  
Marcelo Monteiro Pedroso ◽  
Christopher J. Schofield ◽  
...  

The structural diversity in metallo-β-lactamases (MBLs), especially in the vicinity of the active site, has been a major hurdle in the development of clinically effective inhibitors. Representatives from three variants of the B3 MBL subclass, containing either the canonical HHH/DHH active site motif (present in the majority of MBLs in this subclass) or the QHH/DHH (B3-Q) or HRH/DQK (B3-RQK) variations were reported previously. Here, we describe the structure and kinetic properties of the first example (SIE-1) of a fourth variant containing the EHH/DHH active site motif (B3-E). SIE-1 was identified in the hexachlorocyclohexane-degrading bacterium Sphingobium indicum , and kinetic analyses demonstrate that although it is active against a wide range of antibiotics its efficiency is lower than that of other B3 MBLs, but with improved efficiency towards cephalosporins relative to other β-lactam substrates. The overall fold of SIE-1 is characteristic of the MBLs; the notable variation is observed in the Zn1 site due to the replacement of the canonical His116 by a glutamate. The unusual preference of SIE-1 for cephalosporins and its occurrence in a widespread environmental organism suggests scope for increased MBL-mediated β-lactam resistance. It is thus relevant to include SIE-1 into MBL inhibitor design studies to widen the therapeutic scope of much needed anti-resistance drugs.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1130
Author(s):  
Timo Meyer ◽  
Nadine Zumbrägel ◽  
Christina Geerds ◽  
Harald Gröger ◽  
Hartmut H. Niemann

NADPH-dependent imine reductases (IREDs) are enzymes capable of enantioselectively reducing imines to chiral secondary amines, which represent important building blocks in the chemical and pharmaceutical industry. Since their discovery in 2011, many previously unknown IREDs have been identified, biochemically and structurally characterized and categorized into families. However, the catalytic mechanism and guiding principles for substrate specificity and stereoselectivity remain disputed. Herein, we describe the crystal structure of S-IRED-Ms from Mycobacterium smegmatis together with its cofactor NADPH. S-IRED-Ms belongs to the S-enantioselective superfamily 3 (SFam3) and is the first IRED from SFam3 to be structurally described. The data presented provide further evidence for the overall high degree of structural conservation between different IREDs of various superfamilies. We discuss the role of Asp170 in catalysis and the importance of hydrophobic amino acids in the active site for stereospecificity. Moreover, a separate entrance to the active site, potentially functioning according to a gatekeeping mechanism regulating access and, therefore, substrate specificity is described.


1995 ◽  
Vol 305 (1) ◽  
pp. 33-40 ◽  
Author(s):  
A Petit ◽  
L Maveyraud ◽  
F Lenfant ◽  
J P Samama ◽  
R Labia ◽  
...  

Residue 104 is frequently mutated from a glutamic acid to a lysine in the extended-spectrum TEM beta-lactamases responsible for the resistance to third-generation cephalosporins in clinical Gram negative strains. Among class A beta-lactamases, it is the most variable residue within a highly conserved loop which delineates one side of the active site of the enzymes. To investigate the role of this residue in the extended-spectrum phenotype, it has been replaced by serine, threonine, lysine, arginine, tyrosine and proline. All these substitutions yield active enzymes, with no drastic changes in kinetic properties compared with the wild-type enzyme, except with cefaclor, but an overall improved affinity for second- and third-generation cephalosporins. Only mutant E104K exhibits a significant ability to hydrolyse cefotaxime. Molecular modelling shows that the substitutions have generally no impact on the conformation of the 101-111 loop as the side chains of residues at position 104 are all turned towards the solvent. Unexpectedly, the E104P mutant turns out to be the most efficient enzyme. All our results argue in favour of an indirect role for this residue 104 in the substrate specificity of the class A beta-lactamases. This residue contributes to the precise positioning of residues 130-132 which are involved in substrate binding and catalysis. Changing residue 104 could also modify slightly the local electrostatic potential in this part of the active site. The limited kinetic impact of the mutations at this position have to be analysed in the context of the microbiological problem of resistance to third-generation cephalosporins. Although mutation E104K improves the ability of the enzyme to hydrolyse these compounds, it is not sufficient to confer true resistance, and is always found in clinical isolates associated with at least one mutation at another part of the active site. It is the combined effect of the two mutations that synergistically enhances the hydrolytic capability of the enzyme towards third-generation cephalosporins.


2017 ◽  
Vol 84 (2) ◽  
Author(s):  
Tomas Buryska ◽  
Petra Babkova ◽  
Ondrej Vavra ◽  
Jiri Damborsky ◽  
Zbynek Prokop

ABSTRACTThe haloalkane dehalogenase enzyme DmmA was identified by marine metagenomic screening. Determination of its crystal structure revealed an unusually large active site compared to those of previously characterized haloalkane dehalogenases. Here we present a biochemical characterization of this interesting enzyme with emphasis on its structure-function relationships. DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated environmental pollutants that are resistant to other members of this enzyme family. In addition to having this unique substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, methanol, and acetone. Its broad substrate specificity, high overexpression yield (200 mg of protein per liter of cultivation medium; 50% of total protein), good tolerance to organic cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological applications.IMPORTANCEWe present a thorough biochemical characterization of the haloalkane dehalogenase DmmA from a marine metagenome. This enzyme with an unusually large active site shows remarkably broad substrate specificity, high overexpression, significant tolerance to organic cosolvents, and activity under a broad range of pH conditions. DmmA is an attractive catalyst for sustainable biotechnology applications, e.g., biocatalysis, biosensing, and biodegradation of halogenated pollutants. We also report its ability to convert multiple halogenated compounds to corresponding polyalcohols.


1969 ◽  
Vol 115 (1) ◽  
pp. 47-54 ◽  
Author(s):  
P. M. Dey ◽  
J. B. Pridham

1. The hydrolysis of a variety of galactosides and other glycosides by α-galactosidases I and II of Vicia faba was studied. 2. The effect of temperature on kinetic parameters was also examined. 3. Both enzymes are inhibited by excess of substrate (p-nitrophenyl α-d-galactoside); with enzyme I this is competitive and is caused by the galactosyl moiety. 4. Enzyme I is inhibited by oligosaccharides possessing terminal non-reducing galactose residues and to a smaller extent by l-arabinose and d-fucose. 5. The effect of pH on Km and Vmax. values suggests that carboxyl and imidazole groups are involved in the catalytic activity of enzyme I. 6. Photo-oxidation experiments with enzyme I also suggest that an imidazole group is present at the active site.


2017 ◽  
Vol 474 (6) ◽  
pp. 939-955 ◽  
Author(s):  
Alessandra Astegno ◽  
Elena Maresi ◽  
Mariarita Bertoldi ◽  
Valentina La Verde ◽  
Alessandro Paiardini ◽  
...  

Toxoplasma gondii is a protozoan parasite of medical and veterinary relevance responsible for toxoplasmosis in humans. As an efficacious vaccine remains a challenge, chemotherapy is still the most effective way to combat the disease. In search of novel druggable targets, we performed a thorough characterization of the putative pyridoxal 5′-phosphate (PLP)-dependent enzyme ornithine aminotransferase from T. gondii ME49 (TgOAT). We overexpressed the protein in Escherichia coli and analysed its molecular and kinetic properties by UV-visible absorbance, fluorescence and CD spectroscopy, in addition to kinetic studies of both the steady state and pre-steady state. TgOAT is largely similar to OATs from other species regarding its general transamination mechanism and spectral properties of PLP; however, it does not show a specific ornithine aminotransferase activity like its human homologue, but exhibits both N-acetylornithine and γ-aminobutyric acid (GABA) transaminase activity in vitro, suggesting a role in both arginine and GABA metabolism in vivo. The presence of Val79 in the active site of TgOAT in place of Tyr, as in its human counterpart, provides the necessary room to accommodate N-acetylornithine and GABA, resembling the active site arrangement of GABA transaminases. Moreover, mutation of Val79 to Tyr results in a change of substrate preference between GABA, N-acetylornithine and L-ornithine, suggesting a key role of Val79 in defining substrate specificity. The findings that TgOAT possesses parasite-specific structural features as well as differing substrate specificity from its human homologue make it an attractive target for anti-toxoplasmosis inhibitor design that can be exploited for chemotherapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document