scholarly journals Single-channel properties of L-type calcium channels from failing human ventricle

1998 ◽  
Vol 37 (2) ◽  
pp. 445-455 ◽  
Author(s):  
Renate Handrock ◽  
Frank Schröder ◽  
Stephan Hirt ◽  
Axel Haverich ◽  
Clemens Mittmann ◽  
...  
1994 ◽  
Vol 71 (3) ◽  
pp. 840-855 ◽  
Author(s):  
J. A. Keja ◽  
K. S. Kits

1. Single-channel properties of voltage-dependent calcium channels were investigated in rat melanotropes in short-term primary culture. Unitary currents were resolved using the cell-attached configuration. 2. Depolarizations higher than -50 mV activated a population of 8.1-pS calcium channels [low-voltage activated (LVA)]. The LVA channel ensembles displayed a monoexponential time course of inactivation and a sigmoidal time course of activation fitted best by an m2h Hodgkin-Huxley-type model. Microscopic kinetic analysis suggested that at least one open state, two closed states, and one inactivated state are involved in channel gating. 3. At potentials positive to -20 mV a second class of calcium channels was activated with a conductance of 24.7 pS [high-voltage activated (HVA)]. HVA channels display different gating modes. Gating with high open probability (mode 2) and low open probability (mode 1) as well as blank traces (mode 0) are observed. The HVA channels were heterogeneous with respect to their inactivation properties. Ensembles that decayed entirely during a 300-ms test pulse as well as nondecaying ensembles were observed. Both HVA channel subtypes displayed sigmoidal activation, which was fitted by an m2 model. Microscopic kinetic analysis suggested that at least one open state and two closed states are involved in mode two gating of both HVA channel subtypes. 4. Depolarizing prepulses did not recruit or facilitate calcium channel activity in response to a test pulse, but inactivating HVA channel activity was strongly reduced. Depolarizing prepulses (+50 mV) did not affect the probability of opening of the noninactivating HVA channel. 5. The voltage dependence and kinetics of the LVA as well as both HVA channels are in good agreement with previously published data on the properties of the various calcium current components derived from whole-cell recordings of rat melanotropes. The data suggest that a T-type as well as two L-type channels (an inactivating and noninactivating channel) underlie the calcium current in these cells.


1991 ◽  
Vol 97 (2) ◽  
pp. 393-412 ◽  
Author(s):  
R Mejía-Alvarez ◽  
M Fill ◽  
E Stefani

Single-channel properties of dihydropyridine (DHP)-sensitive calcium channels isolated from transverse tubular (T-tube) membrane of skeletal muscle were explored. Single-channel activity was recorded in planar lipid bilayers after fusion of highly purified rabbit T-tube microsomes. Two populations of DHP-sensitive calcium channels were identified. One type of channel (noninactivating) was active (2 microM +/- Bay K 8644) at steady-state membrane potentials and has been studied in other laboratories. The second type of channel (inactivating) was transiently activated during voltage pulses and had a very low open probability (Po) at steady-state membrane potentials. Inactivating channel activity was observed in 47.3% of the experiments (n = 84 bilayers). The nonstationary kinetics of this channel was determined using a standard voltage pulse (HP = -50 mV, pulse to 0 mV). The time constant (tau) of channel activation was 23 ms. During the mV). The time constant (tau) of channel activation was 23 ms. During the pulse, channel activity decayed (inactivated) with a tau of 3.7 s. Noninactivating single-channel activity was well described by a model with two open and two closed states. Inactivating channel activity was described by the same model with the addition of an inactivated state as proposed for cardiac muscle. The single-channel properties were compared with the kinetics of DHP-sensitive inward calcium currents (ICa) measured at the cellular level. Our results support the hypothesis that voltage-dependent inactivation of single DHP-sensitive channels contributes to the decay of ICa.


2008 ◽  
Vol 100 (4) ◽  
pp. 2115-2124 ◽  
Author(s):  
Adrian Rodriguez-Contreras ◽  
Ping Lv ◽  
Jun Zhu ◽  
Hyo Jeong Kim ◽  
Ebenezer N. Yamoah

To minimize the effects of Ca2+ buffering and signaling, this study sought to examine single Ca2+ channel properties using Sr2+ ions, which substitute well for Ca2+ but bind weakly to intracellular Ca2+ buffers. Two single-channel fluctuations were distinguished by their sensitivity to dihydropyridine agonist (L-type) and insensitivity toward dihydropyridine antagonist (non-L-type). The L- and non-L-type single channels were observed with single-channel conductances of 16 and 19 pS at 70 mM Sr2+ and 11 and 13 pS at 5 mM Sr2+, respectively. We obtained KD estimates of 5.2 and 1.9 mM for Sr2+ for L- and non-L-type channels, respectively. At Ca2+ concentration of ∼2 mM, the single-channel conductances of Sr2+ for the L-type channel was ∼1.5 and 4.0 pS for the non-L-type channels. Thus the limits of single-channel microdomain at the membrane potential of a hair cell (e.g., −65 mV) for Sr2+ ranges from 800 to 2,000 ion/ms, assuming an ECa of 100 mV. The channels are ≥4-fold more sensitive at the physiological concentration ranges than at concentrations >10 mM. Additionally, the channels have the propensity to dwell in the closed state at high concentrations of Sr2+, which is reflected in the time constant of the first latency distributions. It is concluded that the concentration of the permeant ion modulates the gating of hair cell Ca2+ channels. Finally, the closed state/s that is/are altered by high concentrations of Sr2+ may represent divalent ion-dependent inactivation of the L-type channel.


1991 ◽  
Vol 66 (4) ◽  
pp. 1166-1175 ◽  
Author(s):  
D. O. Smith ◽  
C. Franke ◽  
J. L. Rosenheimer ◽  
F. Zufall ◽  
H. Hatt

1. Single-channel properties of desensitizing glutamate-activated channels were analyzed in outside-out patch-clamp recordings from a motoneuron-enriched cell fraction from embryonic chick. A piezo-driven device was used to achieve fast solution exchange at the electrode tip, resulting in maximum activation within 2 ms. 2. Quisqualate/AMPA receptors, with a 13-pS conductance, desensitized rapidly; the desensitization rate depended on agonist concentration but not on membrane potential. When quisqualate was applied slowly, the quisqualate-activated channels desensitized without prior channel opening, indicating desensitization from the closed state. After a 10-ms refractory period, resensitization of all channels required up to 300 ms; resensitization rate did not depend on the duration of the preceding quisqualate application. 3. At agonist concentrations less than or equal to 1 mM, kainate receptors, with a 20-pS conductance, did not desensitize. At kainate concentrations greater than or equal to 1 mM, though, kainate receptors desensitized to a low steady-state conductance within approximately 200 ms. Resensitization of all channels required as long as 3 s, which could render kainate receptors inexcitable during high-frequency activation. 4. Desensitization rates of whole-cell currents were similar to those observed in outside-out mode. Glutamate- and quisqualate-activated responses were similar, suggesting that the rapidly desensitizing quisqualate-sensitive receptor type may dominate the kinetics of whole-cell excitatory postsynaptic currents (EPSCs) in this preparation. 5. It may be concluded that the efficacy of glutamate-mediated synaptic transmission is modulated by differences in the rates of desensitization and resensitization.


1993 ◽  
Vol 264 (2) ◽  
pp. H470-H478 ◽  
Author(s):  
J. M. Quayle ◽  
J. G. McCarron ◽  
J. R. Asbury ◽  
M. T. Nelson

Unitary currents through single calcium channels were measured from cell-attached patches on smooth muscle cells isolated from resistance-sized branches of posterior cerebral arteries from Wistar-Kyoto normotensive rats. Barium (80 and 10 mM) was used as the charge carrier, with and without the dihydropyridine calcium channel agonist BAY R 5417. Unitary currents decreased on membrane depolarization, with a slope conductance of 19.4 pS (80 mM barium). Channel open-state probability (Po) was steeply voltage dependent. Peak Po during test pulses from -70 mV increased e-fold per 4.5-mV depolarization. Mean peak Po at potentials positive to +10 mV was 0.44. Po at steady membrane potentials was also steeply voltage dependent, changing e-fold per 4.5 mV in the absence of inactivation. Steady-state Po at positive potentials was substantially lower than peak Po elicited by test pulses, suggesting that steady-state inactivation can reduce Po by as much as 10-fold. Membrane depolarization decreased the longest mean closed time but had little effect on the mean open time of single calcium channels measured during steady-state recordings. Lowering the external barium concentration from 80 to 10 mM reduced the single channel conductance to 12.4 pS and shifted the relationship between steady-state Po and membrane potential by about -30 mV. BAY R 5417 also shifted this relationship by about -15 mV.


1990 ◽  
Vol 64 (1) ◽  
pp. 91-104 ◽  
Author(s):  
R. E. Fisher ◽  
R. Gray ◽  
D. Johnston

1. The properties of single voltage-gated calcium channels were investigated in acutely exposed CA3 and CA1 pyramidal neurons and granule cells of area dentata in the adult guinea pig hippocampal formation. 2. Guinea pig hippocampal slices were prepared in a conventional manner, then treated with proteolytic enzymes and gently shaken to expose the somata of the three cell types studied. Standard patch-clamp techniques were used to record current flow through calcium channels in cell-attached membrane patches with isotonic barium as the charge carrier. 3. Single-channel current amplitudes were measured at different membrane potentials. Single-channel current-voltage plots were constructed and single-channel slope conductances were found to fall into three classes. These were (approximately) 8, 14, and 25 pS, and were observed in all three cell types. 4. The three groups of channels differed from each other in voltage dependence of activation: from a holding potential of -80, the small-conductance channel began to activate at about -40 to -30 mV, the medium-conductance channel at about -20 mV, and the large-conductance channel at approximately 0 mV. 5. Ensemble averages of single-channel currents during voltage steps revealed differences in voltage-dependent inactivation. The small-conductance channel inactivated completely within approximately 50 ms during steps from -80 to -10 mV or more positive. Steps to less positive potentials resulted in less inactivation. The medium-conductance channel displayed variable inactivation during steps from -80 to 0 mV. Inactivation of this channel during a 160-ms step ranged from virtually zero to approximately 100%. The large-conductance channel displayed no significant inactivation during steps as long as 400 ms. 6. The large-conductance channel was strikingly affected by the dihydropyridine agonist Bay K8644 (0.5-2.0 microM), resulting in a high probability of channel opening, prolonged openings, and an apparent increase in the number of channels available for activation. The medium and small-conductance channels were not noticeably affected by the drug. 7. The large-conductance channel could be induced to open at very negative membrane potentials by holding the patch for several seconds at 20 or 30 mV and stepping to -30 or -40 mV. This process was enhanced by Bay K8644, resulting in prolonged openings at potentials as negative as -100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 69 (5) ◽  
pp. 1758-1768 ◽  
Author(s):  
F. Zufall ◽  
S. Firestein

1. The effects of external divalent cations on odor-dependent, cyclic AMP-activated single-channel currents from olfactory receptor neurons of the tiger salamander (Ambystoma tigrinum) were studied in inside-out membrane patches taken from dendritic regions of freshly isolated sensory cells. 2. Channels were reversibly activated by 100 microM cyclic AMP. In the absence of divalent cations, the channel had a linear current-voltage relation giving a conductance of 45 pS. With increasing concentrations of either Ca2+ or Mg2+ in the external solution, the channel displayed a rapid flickering behavior. At higher concentrations of divalent cations, the transitions were too rapid to be fully resolved and appeared as a reduction in mean unitary single-channel current amplitude. 3. This effect was voltage dependent, and on analysis was shown to be due to an open channel block by divalent ions. In the case of Mg2+, the block increased steadily with hyperpolarization. In contrast, for Ca2+ the block first increased with hyperpolarization and then decreased with further hyperpolarization beyond -70 mV, providing evidence for Ca2+ permeation of this channel. 4. This block is similar to that seen in voltage-gated calcium channels. Additionally, the cyclic nucleotide-gated channel shows some pharmacological similarities with L-type calcium channels, including a novel block of the cyclic nucleotide channel by nifedipine (50 microM). 5. Our results indicate that the sensory generator current simultaneously depends on the presence of the second messenger and on the membrane potential of the olfactory neuron.


1986 ◽  
Vol 87 (6) ◽  
pp. 933-953 ◽  
Author(s):  
R Coronado ◽  
H Affolter

Functional calcium channels present in purified skeletal muscle transverse tubules were inserted into planar phospholipid bilayers composed of the neutral lipid phosphatidylethanolamine (PE), the negatively charged lipid phosphatidylserine (PS), and mixtures of both. The lengthening of the mean open time and stabilization of single channel fluctuations under constant holding potentials was accomplished by the use of the agonist Bay K8644. It was found that the barium current carried through the channel saturates as a function of the BaCl2 concentration at a maximum current of 0.6 pA (at a holding potential of 0 mV) and a half-saturation value of 40 mM. Under saturation, the slope conductance of the channel is 20 pS at voltages more negative than -50 mV and 13 pS at a holding potential of 0 mV. At barium concentrations above and below the half-saturation point, the open channel currents were independent of the bilayer mole fraction of PS from XPS = 0 (pure PE) to XPS = 1.0 (pure PS). It is shown that in the absence of barium, the calcium channel transports sodium or potassium ions (P Na/PK = 1.4) at saturating rates higher than those for barium alone. The sodium conductance in pure PE bilayers saturates as a function of NaCl concentration, following a curve that can be described as a rectangular hyperbola with a half-saturation value of 200 mM and a maximum conductance of 68 pS (slope conductance at a holding potential of 0 mV). In pure PS bilayers, the sodium conductance is about twice that measured in PE at concentrations below 100 mM NaCl. The maximum channel conductance at high ionic strength is unaffected by the lipid charge. This effect at low ionic strength was analyzed according to J. Bell and C. Miller (1984. Biophysical Journal. 45:279-287) and interpreted as if the conduction pathway of the calcium channel were separated from the bilayer lipid by approximately 20 A. This distance thereby effectively insulates the ion entry to the channel from the bulk of the bilayer lipid surface charge. Current vs. voltage curves measured in NaCl in pure PE and pure PS show that similarly small surface charge effects are present in both inward and outward currents. This suggests that the same conduction insulation is present at both ends of the calcium channel.


Sign in / Sign up

Export Citation Format

Share Document