scholarly journals Early detection of cardiovascular autonomic neuropathy in diabetic pigs using blood pressure and heart rate variability

2000 ◽  
Vol 45 (4) ◽  
pp. 889-899 ◽  
Author(s):  
D Mésangeau
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Anne-Marie L. Wegeberg ◽  
Tina Okdahl ◽  
Tina Fløyel ◽  
Christina Brock ◽  
Niels Ejskjaer ◽  
...  

Introduction. A neuroimmune communication exists, and compelling evidence suggests that diabetic neuropathy and systemic inflammation are linked. Our aims were (1) to investigate biomarkers of the ongoing inflammation processes including cytokines, adhesion molecules, and chemokines and (2) to associate the findings with cardiovascular autonomic neuropathy in type 1 diabetes by measuring heart rate variability and cardiac vagal tone. Materials and Methods. We included 104 adults with type 1 diabetes. Heart rate variability, time domain, and frequency domains were calculated from a 24-hour Holter electrocardiogram, while cardiac vagal tone was determined from a 5-minute electrocardiogram. Cytokines (interleukin- (IL-) 1α, IL-4, IL-12p70, IL-13, IL-17, and tumor necrosis factor- (TNF-) α), adhesion molecules (E-selectin, P-selectin, and intercellular adhesion molecule- (ICAM-) 1), and chemokines (chemokine (C-C motif) ligand (CCL)2, CCL3, CCL4, and C-X-C motif chemokine (CXCL)10) were assessed using a Luminex multiplexing technology. Associations between concentrations of inflammatory biomarkers and continuous variables of heart rate variability and cardiac vagal tone were estimated using multivariable linear regression adjusting for age, sex, disease duration, and smoking. Results. Participants with the presence of cardiovascular autonomic neuropathy had higher systemic levels of IL-1α, IL-4, CCL2, and E-selectin than those without cardiovascular autonomic neuropathy. IL-1α, IL-4, IL-12, TNF-α, and E-selectin were inversely associated with both sympathetic and parasympathetic heart rate variability measures (p>0.01). Discussion. Our results show that several pro- and anti-inflammatory factors, believed to be involved in the progression of diabetic polyneuropathy, are associated with cardiovascular autonomic neuropathy, suggesting that these factors may also contribute to the pathogenesis of cardiovascular autonomic neuropathy. Our findings emphasize the importance of the neuroimmune regulatory system in the pathogenesis of neuropathy in type 1 diabetes.


2006 ◽  
Vol 34 (3) ◽  
pp. 291-296 ◽  
Author(s):  
H Kudat ◽  
V Akkaya ◽  
AB Sozen ◽  
S Salman ◽  
S Demirel ◽  
...  

Diabetes mellitus can cause cardiovascular autonomic neuropathy and is associated with increased cardiovascular deaths. We investigated cardiovascular autonomic neuropathy in diabetics and healthy controls by analysis of heart rate variability. Thirty-one diabetics and 30 age- and sex-matched controls were included. In the time domain we measured the mean R-R interval (NN), the standard deviation of the R-R interval index (SDNN), the standard deviation of the 5-min R - R interval mean (SDANN), the root mean square of successive R - R interval differences (RMSSD) and the percentage of beats with a consecutive R - R interval difference > 50 ms (pNN50). In the frequency domain we measured high-frequency power (HF), low-frequency power (LF) and the LF/HF ratio. Diabetes patients had lower values for time-domain and frequency-domain parameters than controls. Most heart rate variability parameters were lower in diabetes patients with chronic complications than in those without chronic complications.


Sign in / Sign up

Export Citation Format

Share Document