Flow patterns in the square cross-section riser of a circulating fluidised bed and the effect of riser exit design

2000 ◽  
Vol 55 (19) ◽  
pp. 4079-4099 ◽  
Author(s):  
E.H. van der Meer ◽  
R.B. Thorpe ◽  
J.F. Davidson
Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1159
Author(s):  
Orlando L. do Nascimento ◽  
David A. Reay ◽  
Vladimir Zivkovic

Liquid–solid circulating fluidised beds (CFB) possess many qualities which makes them useful for industrial operations where particle–liquid contact is vital, e.g., improved heat transfer performance, and consequent uniform temperature, limited back mixing, exceptional solid–liquid contact. Despite this, circulating fluidised beds have seen no application in the micro-technology context. Liquid–solid micro circulating fluidised bed (µCFBs), which basically involves micro-particles fluidisation in fluidised beds within the bed of cross-section or inner diameter at the millimetre scale, could find potential applications in the area of micro-process and microfluidics technology. From an engineering standpoint, it is vital to know the solid circulating velocity, since that dictates the bed capability and operability as processing equipment. Albeit there are several studies on solid circulating velocity measurement in CFBs, this article is introducing the first experimental study on solid circulating velocity measurement in a CFB at micro-scale. The experimental studies were done in a novel micro-CFB which was fabricated by micro milling machining 1 mm2 cross-section channels in Perspex and in a 4 mm2 cross-section micro-CFB made by additive manufacturing technology. Soda-lime glass and polymethyl methacrylate (PMMA) micro-particles were employed as solid materials and tap water as the liquid medium. The digital particle image velocimetry (PIV) method was used as a measurement technique to determine the particle velocity in the micro-CFB system and validated by the valve accumulation technique using a novel magnetic micro-valve. The measured critical transition velocity, Ucr, is comparable to the particle terminal velocity, i.e., the normalised transition velocity is approximately 1 in line with macroscopic systems results and our previous study using simple visual observation. As in macroscopic CFB systems, Ucr decreased with solid inventory (1–9%) and finally becomes stable when the solid inventory is high enough (10–25%) and it increases with a reduction in particle size and density.


2021 ◽  
Vol 410 ◽  
pp. 128438
Author(s):  
Xiaoli Zhu ◽  
Pengfei Dong ◽  
Zhiping Zhu ◽  
Raffaella Ocone ◽  
Wuqiang Yang ◽  
...  

Author(s):  
Guanyi Chen ◽  
Gang Li ◽  
Michel P. Glazer ◽  
Chunlei Zhang ◽  
J. Andries

Energy generation from the use of biomass is gaining an increasing attention. Gasification of biomass at present, is widely accepted as a popular technical route to produce fuel gas for the application in boilers, engine, gas/micro turbine or fuel cell. Up to now, most of researchers have focused their attentions only on fixed-bed gasification and fluidised bed gasification under air-blown conditions. In that case, the producer gas is contaminated by high tar contents and particles which could lead to the corrosion and wear of blades of turbine. Furthermore, both the technologies, particularly fixed bed gasification, are not flexible for using multiple biomass-fuel types and also not feasible economically and environmentally for large scale application up to 10∼50 MWth. An innovative circulating fluidised bed concept has been considered in our laboratory for biomass gasification thereby overcoming these challenges. The concept combines and integrates partial oxidation, fast pyrolysis (with an instantaneous drying), gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas, in terms of low tar level and particulates carried out in the producer gas, and overall emissions reduction associated with the combustion of producer gas. This paper describes our innovative concept and presents some experimental results. The results indicate that the gas yield can be above 1.80Nm3/kg with the calorific value of 4.5–5.0MJ/Nm3, and the fluctuation of the gas yield during the period of operation is 3.3%–3.5% for the temperature of 750–800 °C. In genera, the results achieved support our concept as a promising alternative for the gasifier coupled with micro/gas turbine to generate electricity.


Sign in / Sign up

Export Citation Format

Share Document