transition velocity
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110724
Author(s):  
Wasiu Adeyemi Oke ◽  
Oluseyi Afolabi Adeyemi ◽  
Ayodeji Olalekan Salau

Structures dynamic characteristics and their responses can change due to variations in system parameters. With modal characteristics of the structures, their dynamic responses can be identified. Mode shape remains vital in dynamic analysis of the structures. It can be utilized in failure analysis, and the dynamic interaction between structures and their supports to circumvent abrupt failure. Conversely, unlike empty pipes, the mode shapes for pipes conveying fluid are tough to obtain due to the intricacy of the eigenvectors. Unfortunately, fluid pipes can be found in practice in various engineering applications. Thus, due to their global functions, their dynamic and failure analyses are necessary for monitoring their reliability to avert catastrophic failures. In this work, three techniques for obtaining approximate mode shapes (AMSs) of composite pipes conveying fluid, their transition velocity and relevance in failure analysis were investigated. Hamilton’s principle was employed to model the pipe and discretized using the wavelet-based finite element method. The complex modal characteristics of the composite pipe conveying fluid were obtained by solving the generalized eigenvalue problem and the mode shapes needed for failure analysis were computed. The proposed methods were validated, applied to failure analysis, and some vital results were presented to highlight their effectiveness.


2021 ◽  
Vol 165 ◽  
pp. 409-425
Author(s):  
Stoyan Nedeltchev ◽  
Friedemann Mörs ◽  
Adam Mühlbauer ◽  
Mark W. Hlawitschka ◽  
Frank Graf ◽  
...  

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Miao Sun ◽  
Wuxiong Cao ◽  
Diqi Hu ◽  
Nana Zhang ◽  
Runqiang Chi

The interface defeat and dwell can effectively improve the ballistic performance of ceramic armors under high velocity impact of long rod projectiles. Confinement conditions along both axial and radial directions of ceramic armors can affect these behaviors. With the aim of giving an insight into the effect of cover plate thickness and connection mode of cover plates with confining tubes on these behaviors, numerical simulations were performed in which the confined silicon carbide (SiC) targets with cover plates were impacted by tungsten rods. The pressure on the surfaces of SiC targets with fixed cover plates are compared to that with free cover plates, showing that the plates fixed with the confining tubes can produce higher pressure by way of wedging. With the increase in cover plate thickness, the dwell duration of the tungsten rods on the ceramic interface gradually grows. In addition, the upper and lower limits of transition impact velocities for the SiC targets with cover plates in different connection modes (i.e., free or fixed) were obtained and analyzed. The results show that the increase rate of the transition velocity region for the cover plate with the fixed-mode is relatively stable and lower than with the free-mode. On this basis, the fixed cover plate contributes higher ballistic performances to the SiC target than the free cover plate. It is also noteworthy that the size of transition velocity region does not enlarge linearly with the increase in cover plate thickness due to the slow growth of the upper limit. Accordingly, thickness thresholds exist, which are 5 mm and 6 mm for the fixed and free cover plates, respectively. Considering the ballistic performance and economy, the cover plate with the thickness ranging from 3 mm to 5 mm, i.e., 1.5~2.5 times of the tungsten rod diameter, is ideal for the structural dimensions in this paper.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1159
Author(s):  
Orlando L. do Nascimento ◽  
David A. Reay ◽  
Vladimir Zivkovic

Liquid–solid circulating fluidised beds (CFB) possess many qualities which makes them useful for industrial operations where particle–liquid contact is vital, e.g., improved heat transfer performance, and consequent uniform temperature, limited back mixing, exceptional solid–liquid contact. Despite this, circulating fluidised beds have seen no application in the micro-technology context. Liquid–solid micro circulating fluidised bed (µCFBs), which basically involves micro-particles fluidisation in fluidised beds within the bed of cross-section or inner diameter at the millimetre scale, could find potential applications in the area of micro-process and microfluidics technology. From an engineering standpoint, it is vital to know the solid circulating velocity, since that dictates the bed capability and operability as processing equipment. Albeit there are several studies on solid circulating velocity measurement in CFBs, this article is introducing the first experimental study on solid circulating velocity measurement in a CFB at micro-scale. The experimental studies were done in a novel micro-CFB which was fabricated by micro milling machining 1 mm2 cross-section channels in Perspex and in a 4 mm2 cross-section micro-CFB made by additive manufacturing technology. Soda-lime glass and polymethyl methacrylate (PMMA) micro-particles were employed as solid materials and tap water as the liquid medium. The digital particle image velocimetry (PIV) method was used as a measurement technique to determine the particle velocity in the micro-CFB system and validated by the valve accumulation technique using a novel magnetic micro-valve. The measured critical transition velocity, Ucr, is comparable to the particle terminal velocity, i.e., the normalised transition velocity is approximately 1 in line with macroscopic systems results and our previous study using simple visual observation. As in macroscopic CFB systems, Ucr decreased with solid inventory (1–9%) and finally becomes stable when the solid inventory is high enough (10–25%) and it increases with a reduction in particle size and density.


Author(s):  
Bjørn Harald Olstad ◽  
Henrik Wathne ◽  
Tomohiro Gonjo

Background and aim: To identify kinematic variables related to short course 100 m breaststroke performance. Methods: An automatic race analysis system was utilized to obtain start (0–15 m), turn (5 m before the wall until 10 m out), finish (95–100 m), and clean swimming (the rest of the race) segment times as well as cycle rate and cycle length during each swimming cycle from 15 male swimmers during a 100 m breaststroke race. A bivariate correlation and a partial correlation were employed to assess the relationship between each variable and swimming time. Results: Turns were the largest time contributor to the finishing time (44.30 ± 0.58%), followed by clean swimming (38.93 ± 0.50%), start (11.39 ± 0.22%), and finish (5.36 ± 0.18%). The finishing time was correlated (p < 0.001) with start segment time (r = 0.979), clean swimming time (r = 0.940), and 10 m turn-out time (r = 0.829). The clean swimming time was associated with the finishing time, but cycle rate and cycle length were not. In both start and turns, the peak velocity (i.e., take-off and push-off velocity) and the transition velocity were related to the segment time (r ≤ −0.673, p ≤ 0.006). Conclusions: Breaststroke training should focus on: (I) 15 m start with generating high take-off velocity, (II) improving clean swimming velocity by finding an optimal balance between cycle length and rate, (III) 10 m turn-out with maintaining a strong wall push-off, and (IV) establishing a high transition velocity from underwater to surface swimming.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 855 ◽  
Author(s):  
Bin Huang ◽  
Xinyu Hu ◽  
Cheng Fu ◽  
Chongjiang Liu ◽  
Ying Wang ◽  
...  

In order to solve the problem of the low production degree of oil layers caused by an excessively large permeability difference between layers during polymer flooding, we propose partial pressure injection technology using a partial pressure tool. The partial pressure tool controls the injection pressure of a polymer solution through a throttling effect to improve the oil displacement effect in high- and low-permeability reservoirs. In order to analyze the influence of the partial pressure tool on the rheological property of the polymer solution, a physical model of the tool is established, the rheological equation of the polymer solution in the partial pressure tool is established according to force balance analysis, the transition velocity equation for the polymer solution is established based on the concept of stability factor, and the influence of varying the structural parameters of the partial pressure tool on the rheological property of the polymer solution is analyzed. The results show that the pressure drop of the polymer solution increases with the decrease of the front groove angle of the partial pressure tool (from 60° to 30°), reaching a maximum of 1.77 MPa at a front groove angle of 30°. Additionally, the pressure drop of the polymer solution increases with the decrease of the outer cylinder radius (from 25 to 24 mm), reaching a maximum of 1.32 MPa at a radius of 24 mm. However, the apparent viscosity of the polymer solution before and after flowing through the partial pressure tool does not change for any of the studied parameters. These research results are of great significance to research on partial pressure injection technology and enhanced oil recovery.


2019 ◽  
Vol 32 (2) ◽  
pp. 347-359
Author(s):  
Oguchi Nkwocha

PurposeMeasures are important to healthcare outcomes. Outcome changes result from deliberate selective intervention introduction on a measure. If measures can be characterized and categorized, then the resulting schema may be generalized and utilized as a framework for uniquely identifying, packaging and comparing different interventions and probing target systems to facilitate selecting the most appropriate intervention for maximum desired outcomes. Measure characterization was accomplished with multi-axial statistical analysis and measure categorization by logical tabulation. The measure of interest is a key provider productivity index: “patient visits per hour,” while the specific intervention is “patient schedule manipulation by overbooking.” The paper aims to discuss these issues.Design/methodology/approachFor statistical analysis, interrupted time series (ITS), robust-ITS and outlier detection models were applied to an 18-month data set that included patient visits per hour and intervention introduction time. A statistically significant change-point was determined, resulting in pre-intervention, transitional and post-effect segmentation. Linear regression modeling was used to analyze pre-intervention and post-effect mean change while a triangle was used to analyze the transitional state. For categorization, an “intervention moments” table was constructed from the analysis results with: time-to-effect, pre- and post-mean change magnitude and velocity; pre- and post-correlation and variance; and effect decay/doubling time. The table included transitional parameters such as transition velocity and transition footprint visualization represented as a triangle.FindingsThe intervention produced a significant change. The pre-intervention and post-effect means for patient visits per hour were statistically different (0.38,p=0.0001). The pre- and post-variance change (0.23,p=0.01) was statistically significant (variance was higher post-intervention, which was undesirable). Post-intervention correlation was higher (desirable). Decay time for the effect was calculated as 11 months post-effect. Time-to-effect was four months; mean change velocity was +0.094 visits per h/month. A transition triangular footprint was produced, yielding 0.35 visits per hr/month transition velocity. Using these results, the intervention was fully profiled and thereby categorized as an intervention moments table.Research limitations/implicationsOne limitation is sample size for this time series, 18 monthly cycles’ analysis. However, interventions on measures in healthcare demand short time cycles (hence necessarily yielding fewer data points) for practicality, meaningfulness and usefulness. Despite this shortcoming, the statistical processes applied such as outliers detection,t-test for mean difference,F-test for variances and modeling, all consider the small sample sizes. Seasonality, which usually affects time series, was not detected and even if present, was also considered by modeling.Practical implicationsObtaining an intervention profile, made possible by multidimensional analysis, allows interventions to be uniquely classified and categorized, enabling informed, comparative and appropriate selective deployment against health measures, thus potentially contributing to outcomes optimization.Social implicationsThe inevitable direction for healthcare is heavy investment in measures outcomes optimization to improve: patient experience; population health; and reduce costs. Interventions are the tools that change outcomes. Creative modeling and applying novel methods for intervention analysis are necessary if healthcare is to achieve this goal. Analytical methods should categorize and rank interventions; probe the measures to improve future selection and adoption; reveal the organic systems’ strengths and shortcomings implementing the interventions for fine-tuning for better performance.Originality/valueAn “intervention moments table” is proposed, created from a multi-axial statistical intervention analysis for organizing, classifying and categorizing interventions. The analysis-set was expanded with additional parameters such as time-to-effect, mean change velocity and effect decay time/doubling time, including transition zone analysis, which produced a unique transitional footprint; and transition velocity. The “intervention moments” should facilitate intervention cross-comparisons, intervention selection and optimal intervention deployment for best outcomes optimization.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 64 ◽  
Author(s):  
Mengwei Han ◽  
Rosa Espinosa-Marzal

The present study provides molecular insight into the mechanisms underlying energy dissipation and lubrication of a smooth contact lubricated by an ionic liquid. We have performed normal and lateral force measurements with a surface forces apparatus and by colloidal probe atomic force microscopy on the following model systems: 1-ethyl-3-methyl imidazolium bis-(trifluoro-methylsulfonyl) imide, in dry state and in equilibrium with ambient (humid) air; the surface was either bare mica or functionalized with a polymer brush. The velocity-dependence of the friction force reveals two different regimes of lubrication, boundary-film lubrication, with distinct characteristics for each model system, and fluid-film lubrication above a transition velocity V∗. The underlying mechanisms of energy dissipation are evaluated with molecular models for stress-activated slip and flow, respectively. The stress-activated slip assumes that two boundary layers (composed of ions/water strongly adsorbed to the surface) slide past each other; the dynamics of interionic interactions at the slip plane and the strength of the interaction dictate the change in friction -decreasing, increasing or remaining constant- with velocity in the boundary-film lubrication regime. Above a transition velocity V∗, friction monotonically increases with velocity in the three model systems. Here, multiple layers of ions slide past each other (“flow”) under a shear stress and friction depends on a shear-activation volume that is significantly affected by confinement. The proposed friction model provides a molecular perspective of the lubrication of smooth contacts by ionic liquids and allows identifying the physical parameters that control friction.


Sign in / Sign up

Export Citation Format

Share Document