scholarly journals Solids flow patterns in large-scale circulating fluidised bed boilers: Experimental evaluation under fluid-dynamically down-scaled conditions

2021 ◽  
Vol 231 ◽  
pp. 116309
Author(s):  
Tove Djerf ◽  
David Pallarès ◽  
Filip Johnsson
Author(s):  
Guanyi Chen ◽  
Gang Li ◽  
Michel P. Glazer ◽  
Chunlei Zhang ◽  
J. Andries

Energy generation from the use of biomass is gaining an increasing attention. Gasification of biomass at present, is widely accepted as a popular technical route to produce fuel gas for the application in boilers, engine, gas/micro turbine or fuel cell. Up to now, most of researchers have focused their attentions only on fixed-bed gasification and fluidised bed gasification under air-blown conditions. In that case, the producer gas is contaminated by high tar contents and particles which could lead to the corrosion and wear of blades of turbine. Furthermore, both the technologies, particularly fixed bed gasification, are not flexible for using multiple biomass-fuel types and also not feasible economically and environmentally for large scale application up to 10∼50 MWth. An innovative circulating fluidised bed concept has been considered in our laboratory for biomass gasification thereby overcoming these challenges. The concept combines and integrates partial oxidation, fast pyrolysis (with an instantaneous drying), gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas, in terms of low tar level and particulates carried out in the producer gas, and overall emissions reduction associated with the combustion of producer gas. This paper describes our innovative concept and presents some experimental results. The results indicate that the gas yield can be above 1.80Nm3/kg with the calorific value of 4.5–5.0MJ/Nm3, and the fluctuation of the gas yield during the period of operation is 3.3%–3.5% for the temperature of 750–800 °C. In genera, the results achieved support our concept as a promising alternative for the gasifier coupled with micro/gas turbine to generate electricity.


Fuel ◽  
2011 ◽  
Vol 90 (4) ◽  
pp. 1325-1334 ◽  
Author(s):  
Håkan Kassman ◽  
Markus Broström ◽  
Magnus Berg ◽  
Lars-Erik Åmand

2016 ◽  
Vol 37 (2) ◽  
pp. 281-291
Author(s):  
Paweł Mirek ◽  
Marcin Klajny

Abstract In the paper flow dynamic similarity criteria have been presented to reflect the macroscopic flow pattern in the combustion chamber of large-scale circulating fluidised bed boilers. The proposed scaling rules have been verified on two cold models of CFB boilers operating in Tauron Wytwarzanie S.A. - El. Lagisza division (scale factor 1/20) and Fortum Power and Heat Poland Sp. z o. o. Czestochowa division (scale factor 1/10) – working with the power of 966 MWth and 120 MWth, respectively. As follows from the results of measurements, regardless of CFB boiler’s geometry the use of a defined set of criterial numbers allows to obtain satisfactory agreement between the suspension density distributions registered in the CFB boilers and scaling models.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


2021 ◽  
Vol 410 ◽  
pp. 128438
Author(s):  
Xiaoli Zhu ◽  
Pengfei Dong ◽  
Zhiping Zhu ◽  
Raffaella Ocone ◽  
Wuqiang Yang ◽  
...  

2018 ◽  
Vol 21 (2) ◽  
pp. 1455-1455 ◽  
Author(s):  
Omar Batarfi ◽  
Radwa El Shawi ◽  
Ayman G. Fayoumi ◽  
Reza Nouri ◽  
Seyed-Mehdi-Reza Beheshti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document